Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiotadxy Unicode version

 Description: Deduction version of nfiotaxy 5050. (Contributed by Jim Kingdon, 21-Dec-2018.)
Hypotheses
Ref Expression
Assertion
Ref Expression
Distinct variable group:   ,
Allowed substitution hints:   (,)   (,)

Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfiota2 5047 . 2
2 nfv 1491 . . . 4
3 nfiotadxy.1 . . . . 5
4 nfiotadxy.2 . . . . . 6
5 nfcv 2255 . . . . . . . 8
6 nfcv 2255 . . . . . . . 8
75, 6nfeq 2263 . . . . . . 7
87a1i 9 . . . . . 6
94, 8nfbid 1550 . . . . 5
103, 9nfald 1716 . . . 4
112, 10nfabd 2274 . . 3
1211nfunid 3709 . 2
131, 12nfcxfrd 2253 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 104  wal 1312   wceq 1314  wnf 1419  cab 2101  wnfc 2242  cuni 3702  cio 5044 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097 This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-rex 2396  df-sn 3499  df-uni 3703  df-iota 5046 This theorem is referenced by:  nfiotaxy  5050  nfriotadxy  5692
 Copyright terms: Public domain W3C validator