ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfmpt2 Unicode version

Theorem nfmpt2 5667
Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.)
Hypotheses
Ref Expression
nfmpt2.1  |-  F/_ z A
nfmpt2.2  |-  F/_ z B
nfmpt2.3  |-  F/_ z C
Assertion
Ref Expression
nfmpt2  |-  F/_ z
( x  e.  A ,  y  e.  B  |->  C )
Distinct variable groups:    x, z    y,
z
Allowed substitution hints:    A( x, y, z)    B( x, y, z)    C( x, y, z)

Proof of Theorem nfmpt2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 df-mpt2 5611 . 2  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  w >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  w  =  C ) }
2 nfmpt2.1 . . . . . 6  |-  F/_ z A
32nfcri 2219 . . . . 5  |-  F/ z  x  e.  A
4 nfmpt2.2 . . . . . 6  |-  F/_ z B
54nfcri 2219 . . . . 5  |-  F/ z  y  e.  B
63, 5nfan 1500 . . . 4  |-  F/ z ( x  e.  A  /\  y  e.  B
)
7 nfmpt2.3 . . . . 5  |-  F/_ z C
87nfeq2 2236 . . . 4  |-  F/ z  w  =  C
96, 8nfan 1500 . . 3  |-  F/ z ( ( x  e.  A  /\  y  e.  B )  /\  w  =  C )
109nfoprab 5651 . 2  |-  F/_ z { <. <. x ,  y
>. ,  w >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  w  =  C ) }
111, 10nfcxfr 2222 1  |-  F/_ z
( x  e.  A ,  y  e.  B  |->  C )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1287    e. wcel 1436   F/_wnfc 2212   {coprab 5607    |-> cmpt2 5608
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067
This theorem depends on definitions:  df-bi 115  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-oprab 5610  df-mpt2 5611
This theorem is referenced by:  nfof  5811  nfiseq  9778
  Copyright terms: Public domain W3C validator