ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfmpt21 Unicode version

Theorem nfmpt21 5697
Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
Assertion
Ref Expression
nfmpt21  |-  F/_ x
( x  e.  A ,  y  e.  B  |->  C )

Proof of Theorem nfmpt21
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-mpt2 5639 . 2  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
2 nfoprab1 5680 . 2  |-  F/_ x { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
31, 2nfcxfr 2225 1  |-  F/_ x
( x  e.  A ,  y  e.  B  |->  C )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1289    e. wcel 1438   F/_wnfc 2215   {coprab 5635    |-> cmpt2 5636
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-oprab 5638  df-mpt2 5639
This theorem is referenced by:  ovmpt2s  5750  ov2gf  5751  ovmpt2dxf  5752  ovmpt2df  5758  ovmpt2dv2  5760  xpcomco  6522  mapxpen  6544
  Copyright terms: Public domain W3C validator