ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpt2x Unicode version

Theorem ovmpt2x 5811
Description: The value of an operation class abstraction. Variant of ovmpt2ga 5812 which does not require  D and  x to be distinct. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.)
Hypotheses
Ref Expression
ovmpt2x.1  |-  ( ( x  =  A  /\  y  =  B )  ->  R  =  S )
ovmpt2x.2  |-  ( x  =  A  ->  D  =  L )
ovmpt2x.3  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
Assertion
Ref Expression
ovmpt2x  |-  ( ( A  e.  C  /\  B  e.  L  /\  S  e.  H )  ->  ( A F B )  =  S )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    x, L, y   
x, S, y
Allowed substitution hints:    D( x, y)    R( x, y)    F( x, y)    H( x, y)

Proof of Theorem ovmpt2x
StepHypRef Expression
1 elex 2644 . 2  |-  ( S  e.  H  ->  S  e.  _V )
2 ovmpt2x.3 . . . 4  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
32a1i 9 . . 3  |-  ( ( A  e.  C  /\  B  e.  L  /\  S  e.  _V )  ->  F  =  ( x  e.  C ,  y  e.  D  |->  R ) )
4 ovmpt2x.1 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  R  =  S )
54adantl 272 . . 3  |-  ( ( ( A  e.  C  /\  B  e.  L  /\  S  e.  _V )  /\  ( x  =  A  /\  y  =  B ) )  ->  R  =  S )
6 ovmpt2x.2 . . . 4  |-  ( x  =  A  ->  D  =  L )
76adantl 272 . . 3  |-  ( ( ( A  e.  C  /\  B  e.  L  /\  S  e.  _V )  /\  x  =  A )  ->  D  =  L )
8 simp1 946 . . 3  |-  ( ( A  e.  C  /\  B  e.  L  /\  S  e.  _V )  ->  A  e.  C )
9 simp2 947 . . 3  |-  ( ( A  e.  C  /\  B  e.  L  /\  S  e.  _V )  ->  B  e.  L )
10 simp3 948 . . 3  |-  ( ( A  e.  C  /\  B  e.  L  /\  S  e.  _V )  ->  S  e.  _V )
113, 5, 7, 8, 9, 10ovmpt2dx 5809 . 2  |-  ( ( A  e.  C  /\  B  e.  L  /\  S  e.  _V )  ->  ( A F B )  =  S )
121, 11syl3an3 1216 1  |-  ( ( A  e.  C  /\  B  e.  L  /\  S  e.  H )  ->  ( A F B )  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 927    = wceq 1296    e. wcel 1445   _Vcvv 2633  (class class class)co 5690    |-> cmpt2 5692
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-setind 4381
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-iota 5014  df-fun 5051  df-fv 5057  df-ov 5693  df-oprab 5694  df-mpt2 5695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator