![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseqtr4i | Unicode version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
sseqtr4.1 |
![]() ![]() ![]() ![]() |
sseqtr4.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sseqtr4i |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtr4.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | sseqtr4.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | eqcomi 2092 |
. 2
![]() ![]() ![]() ![]() |
4 | 1, 3 | sseqtri 3058 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-11 1442 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-in 3005 df-ss 3012 |
This theorem is referenced by: eqimss2i 3081 difdif2ss 3256 snsspr1 3585 snsspr2 3586 snsstp1 3587 snsstp2 3588 snsstp3 3589 prsstp12 3590 prsstp13 3591 prsstp23 3592 iunxdif2 3778 pwpwssunieq 3817 sssucid 4242 opabssxp 4512 dmresi 4767 cnvimass 4795 ssrnres 4873 cnvcnv 4883 cnvssrndm 4952 dmmpt2ssx 5969 tfrcllemssrecs 6117 sucinc 6206 mapex 6409 exmidpw 6622 casefun 6774 djufun 6782 ressxr 7529 ltrelxr 7545 nnssnn0 8674 un0addcl 8704 un0mulcl 8705 nn0ssxnn0 8737 fzossnn0 9582 isumclim3 10813 isprm3 11374 phimullem 11475 |
Copyright terms: Public domain | W3C validator |