![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5eqel | Unicode version |
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
syl5eqel.1 |
![]() ![]() ![]() ![]() |
syl5eqel.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl5eqel |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5eqel.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | syl5eqel.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | eqeltrd 2164 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-4 1445 ax-17 1464 ax-ial 1472 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-cleq 2081 df-clel 2084 |
This theorem is referenced by: syl5eqelr 2175 csbexga 3967 otexg 4057 tpexg 4269 dmresexg 4736 f1oabexg 5265 funfvex 5322 riotaexg 5612 riotaprop 5631 fnovex 5682 ovexg 5683 fovrn 5787 fnovrn 5792 cofunexg 5882 cofunex2g 5883 abrexex2g 5891 xpexgALT 5904 mpt2fvex 5973 tfrex 6133 frec0g 6162 freccllem 6167 ecexg 6294 qsexg 6346 pmex 6408 diffifi 6608 unfidisj 6630 prfidisj 6635 tpfidisj 6636 ssfirab 6641 ssfidc 6642 fnfi 6644 funrnfi 6649 iunfidisj 6653 infclti 6716 djuex 6734 addvalex 7379 negcl 7680 intqfrac2 9722 intfracq 9723 frec2uzzd 9803 frecuzrdgrrn 9811 iseqf1olemqpcl 9921 seq3f1olemqsum 9925 ibcval5 10167 climmpt 10684 zisum 10770 fsumzcl2 10795 fsump1i 10823 fsumabs 10855 hash2iun1dif1 10870 mertenslemi1 10925 ialgcvg 11304 ialgcvga 11307 ialgfx 11308 eucialgcvga 11314 eucialg 11315 crth 11474 phimullem 11475 ressid 11548 topopn 11560 bj-snexg 11758 |
Copyright terms: Public domain | W3C validator |