![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5rbbr | Unicode version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
syl5rbbr.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl5rbbr.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl5rbbr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5rbbr.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | bicomi 131 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | syl5rbbr.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | syl5rbb 192 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: xordc 1329 sbal2 1947 eqsnm 3607 fnressn 5499 fressnfv 5500 eluniimadm 5560 genpassl 7146 genpassu 7147 1idprl 7212 1idpru 7213 axcaucvglemres 7497 negeq0 7799 muleqadd 8200 crap0 8481 addltmul 8715 fzrev 9561 modq0 9799 cjap0 10404 cjne0 10405 caucvgrelemrec 10475 lenegsq 10591 isumss 10846 fsumsplit 10864 sumsplitdc 10889 dvdsabseq 11189 oddennn 11546 elabgf0 11981 |
Copyright terms: Public domain | W3C validator |