Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl5sseqr Unicode version

Theorem syl5sseqr 3075
 Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
syl5sseqr.1
syl5sseqr.2
Assertion
Ref Expression
syl5sseqr

Proof of Theorem syl5sseqr
StepHypRef Expression
1 syl5sseqr.1 . . 3
21a1i 9 . 2
3 syl5sseqr.2 . 2
42, 3sseqtr4d 3063 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1289   wss 2999 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-11 1442  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070 This theorem depends on definitions:  df-bi 115  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-in 3005  df-ss 3012 This theorem is referenced by:  resdif  5269  fimacnv  5422  tfrlem5  6071  fsumsplit  10788  phimullem  11466  istopon  11493
 Copyright terms: Public domain W3C validator