ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl6breq Unicode version

Theorem syl6breq 3890
Description: A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
Hypotheses
Ref Expression
syl6breq.1  |-  ( ph  ->  A R B )
syl6breq.2  |-  B  =  C
Assertion
Ref Expression
syl6breq  |-  ( ph  ->  A R C )

Proof of Theorem syl6breq
StepHypRef Expression
1 syl6breq.1 . 2  |-  ( ph  ->  A R B )
2 eqid 2089 . 2  |-  A  =  A
3 syl6breq.2 . 2  |-  B  =  C
41, 2, 33brtr3g 3882 1  |-  ( ph  ->  A R C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1290   class class class wbr 3851
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-v 2622  df-un 3004  df-sn 3456  df-pr 3457  df-op 3459  df-br 3852
This theorem is referenced by:  syl6breqr  3891  en2eleq  6882  en2other2  6883  maxle2  10706  mertenslem2  10991  ege2le3  11022  cos01gt0  11114  sin02gt0  11115  unennn  11549
  Copyright terms: Public domain W3C validator