ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl6breqr Unicode version

Theorem syl6breqr 3877
Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.)
Hypotheses
Ref Expression
syl6breqr.1  |-  ( ph  ->  A R B )
syl6breqr.2  |-  C  =  B
Assertion
Ref Expression
syl6breqr  |-  ( ph  ->  A R C )

Proof of Theorem syl6breqr
StepHypRef Expression
1 syl6breqr.1 . 2  |-  ( ph  ->  A R B )
2 syl6breqr.2 . . 3  |-  C  =  B
32eqcomi 2092 . 2  |-  B  =  C
41, 3syl6breq 3876 1  |-  ( ph  ->  A R C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1289   class class class wbr 3837
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-un 3001  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838
This theorem is referenced by:  fiunsnnn  6577  unsnfi  6609  exmidfodomrlemr  6807  exmidfodomrlemrALT  6808  gtndiv  8811  intqfrac2  9691  uzenom  9797
  Copyright terms: Public domain W3C validator