ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl6eqbrr Unicode version

Theorem syl6eqbrr 3905
Description: A chained equality inference for a binary relation. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
syl6eqbrr.1  |-  ( ph  ->  B  =  A )
syl6eqbrr.2  |-  B R C
Assertion
Ref Expression
syl6eqbrr  |-  ( ph  ->  A R C )

Proof of Theorem syl6eqbrr
StepHypRef Expression
1 syl6eqbrr.1 . . 3  |-  ( ph  ->  B  =  A )
21eqcomd 2100 . 2  |-  ( ph  ->  A  =  B )
3 syl6eqbrr.2 . 2  |-  B R C
42, 3syl6eqbr 3904 1  |-  ( ph  ->  A R C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1296   class class class wbr 3867
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-v 2635  df-un 3017  df-sn 3472  df-pr 3473  df-op 3475  df-br 3868
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator