![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6eqel | Unicode version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
syl6eqel.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
syl6eqel.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl6eqel |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6eqel.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl6eqel.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | eqeltrd 2191 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1406 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-4 1470 ax-17 1489 ax-ial 1497 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-cleq 2108 df-clel 2111 |
This theorem is referenced by: syl6eqelr 2206 snexprc 4070 onsucelsucexmidlem 4404 dcextest 4455 nnpredcl 4496 ovprc 5760 nnmcl 6331 xpsnen 6668 xpfi 6771 snexxph 6790 ctssdclemn0 6947 indpi 7098 nq0m0r 7212 genpelxp 7267 un0mulcl 8915 znegcl 8989 zeo 9060 eqreznegel 9308 xnegcl 9508 modqid0 10016 q2txmodxeq0 10050 ser0 10180 expcllem 10197 m1expcl2 10208 bcval 10388 bccl 10406 hashinfom 10417 resqrexlemlo 10677 iserge0 11004 sumrbdclem 11037 fsum3cvg 11038 summodclem3 11041 summodclem2a 11042 fisumss 11053 binom 11145 bcxmas 11150 gcdval 11496 gcdcl 11503 lcmcl 11599 ssblps 12414 ssbl 12415 xmeter 12425 blssioo 12531 nninfsellemeqinf 12904 nninffeq 12908 isomninnlem 12917 trilpolemclim 12921 |
Copyright terms: Public domain | W3C validator |