![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6reqr | Unicode version |
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
syl6reqr.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
syl6reqr.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl6reqr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6reqr.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl6reqr.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | eqcomi 2093 |
. 2
![]() ![]() ![]() ![]() |
4 | 1, 3 | syl6req 2138 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-gen 1384 ax-4 1446 ax-17 1465 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-cleq 2082 |
This theorem is referenced by: iftrue 3402 iffalse 3405 difprsn1 3582 dmmptg 4941 relcoi1 4975 funimacnv 5103 dffv3g 5314 dfimafn 5366 fvco2 5386 isoini 5611 oprabco 5996 ixpconstg 6478 unfiexmid 6682 undifdc 6688 sbthlemi4 6723 sbthlemi5 6724 sbthlemi6 6725 supval2ti 6744 exmidfodomrlemim 6881 eqneg 8253 zeo 8905 fseq1p1m1 9562 iseqval 9925 iseqvalt 9927 seq3val 9928 hashfzo 10284 hashxp 10288 fsumconst 10902 modfsummod 10906 telfsumo 10914 mulgcd 11337 algcvg 11362 phiprmpw 11530 strslfv3 11593 |
Copyright terms: Public domain | W3C validator |