ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl6sseq Unicode version

Theorem syl6sseq 3072
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
syl6sseq.1  |-  ( ph  ->  A  C_  B )
syl6sseq.2  |-  B  =  C
Assertion
Ref Expression
syl6sseq  |-  ( ph  ->  A  C_  C )

Proof of Theorem syl6sseq
StepHypRef Expression
1 syl6sseq.1 . 2  |-  ( ph  ->  A  C_  B )
2 syl6sseq.2 . . 3  |-  B  =  C
32sseq2i 3051 . 2  |-  ( A 
C_  B  <->  A  C_  C
)
41, 3sylib 120 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1289    C_ wss 2999
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-11 1442  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-in 3005  df-ss 3012
This theorem is referenced by:  syl6sseqr  3073  onintonm  4334  relrelss  4957  iotanul  4995  foimacnv  5271  cauappcvgprlemladdru  7215  zisum  10774  fsum3cvg3  10789
  Copyright terms: Public domain W3C validator