Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  trintssmOLD Unicode version

Theorem trintssmOLD 3959
 Description: Obsolete version of trintssm 3958 as of 30-Oct-2021. (Contributed by Jim Kingdon, 22-Aug-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
trintssmOLD
Distinct variable group:   ,

Proof of Theorem trintssmOLD
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 vex 2623 . . . 4
21elint2 3701 . . 3
3 r19.2m 3373 . . . . 5
43ex 114 . . . 4
5 trel 3949 . . . . . 6
65expcomd 1376 . . . . 5
76rexlimdv 2489 . . . 4
84, 7sylan9 402 . . 3
92, 8syl5bi 151 . 2
109ssrdv 3032 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103  wex 1427   wcel 1439  wral 2360  wrex 2361   wss 3000  cint 3694   wtr 3942 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071 This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-in 3006  df-ss 3013  df-uni 3660  df-int 3695  df-tr 3943 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator