ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trintssmOLD Unicode version

Theorem trintssmOLD 3959
Description: Obsolete version of trintssm 3958 as of 30-Oct-2021. (Contributed by Jim Kingdon, 22-Aug-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
trintssmOLD  |-  ( ( E. x  x  e.  A  /\  Tr  A
)  ->  |^| A  C_  A )
Distinct variable group:    x, A

Proof of Theorem trintssmOLD
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 vex 2623 . . . 4  |-  y  e. 
_V
21elint2 3701 . . 3  |-  ( y  e.  |^| A  <->  A. x  e.  A  y  e.  x )
3 r19.2m 3373 . . . . 5  |-  ( ( E. x  x  e.  A  /\  A. x  e.  A  y  e.  x )  ->  E. x  e.  A  y  e.  x )
43ex 114 . . . 4  |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  y  e.  x  ->  E. x  e.  A  y  e.  x )
)
5 trel 3949 . . . . . 6  |-  ( Tr  A  ->  ( (
y  e.  x  /\  x  e.  A )  ->  y  e.  A ) )
65expcomd 1376 . . . . 5  |-  ( Tr  A  ->  ( x  e.  A  ->  ( y  e.  x  ->  y  e.  A ) ) )
76rexlimdv 2489 . . . 4  |-  ( Tr  A  ->  ( E. x  e.  A  y  e.  x  ->  y  e.  A ) )
84, 7sylan9 402 . . 3  |-  ( ( E. x  x  e.  A  /\  Tr  A
)  ->  ( A. x  e.  A  y  e.  x  ->  y  e.  A ) )
92, 8syl5bi 151 . 2  |-  ( ( E. x  x  e.  A  /\  Tr  A
)  ->  ( y  e.  |^| A  ->  y  e.  A ) )
109ssrdv 3032 1  |-  ( ( E. x  x  e.  A  /\  Tr  A
)  ->  |^| A  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   E.wex 1427    e. wcel 1439   A.wral 2360   E.wrex 2361    C_ wss 3000   |^|cint 3694   Tr wtr 3942
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-in 3006  df-ss 3013  df-uni 3660  df-int 3695  df-tr 3943
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator