ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zisum Unicode version

Theorem zisum 10738
Description: Series sum with index set a subset of the upper integers. (Contributed by Mario Carneiro, 13-Jun-2019.)
Hypotheses
Ref Expression
zisum.1  |-  Z  =  ( ZZ>= `  M )
zisum.2  |-  ( ph  ->  M  e.  ZZ )
zisum.3  |-  ( ph  ->  A  C_  Z )
zisum.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
0 ) )
zisum.dc  |-  ( ph  ->  A. x  e.  Z DECID  x  e.  A )
zisum.5  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
zisum  |-  ( ph  -> 
sum_ k  e.  A  B  =  (  ~~>  `  seq M (  +  ,  F ,  CC )
) )
Distinct variable groups:    A, k, x   
x, B    k, F, x    x, M    k, Z, x    ph, k, x
Allowed substitution hints:    B( k)    M( k)

Proof of Theorem zisum
Dummy variables  a  b  j  n  f  g  i  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpb 941 . . . . . . . 8  |-  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  ->  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x ) )
2 eleq1w 2148 . . . . . . . . . . . . 13  |-  ( n  =  i  ->  (
n  e.  A  <->  i  e.  A ) )
3 csbeq1 2934 . . . . . . . . . . . . 13  |-  ( n  =  i  ->  [_ n  /  k ]_ B  =  [_ i  /  k ]_ B )
42, 3ifbieq1d 3409 . . . . . . . . . . . 12  |-  ( n  =  i  ->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )  =  if ( i  e.  A ,  [_ i  /  k ]_ B ,  0 ) )
54cbvmptv 3926 . . . . . . . . . . 11  |-  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )  =  ( i  e.  ZZ  |->  if ( i  e.  A ,  [_ i  /  k ]_ B ,  0 ) )
6 simpr 108 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  A  C_  ( ZZ>= `  m ) )  /\  i  e.  A )  ->  i  e.  A )
7 zisum.5 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
87ralrimiva 2446 . . . . . . . . . . . . 13  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
98ad3antrrr 476 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  A  C_  ( ZZ>= `  m ) )  /\  i  e.  A )  ->  A. k  e.  A  B  e.  CC )
10 nfcsb1v 2961 . . . . . . . . . . . . . 14  |-  F/_ k [_ i  /  k ]_ B
1110nfel1 2239 . . . . . . . . . . . . 13  |-  F/ k
[_ i  /  k ]_ B  e.  CC
12 csbeq1a 2939 . . . . . . . . . . . . . 14  |-  ( k  =  i  ->  B  =  [_ i  /  k ]_ B )
1312eleq1d 2156 . . . . . . . . . . . . 13  |-  ( k  =  i  ->  ( B  e.  CC  <->  [_ i  / 
k ]_ B  e.  CC ) )
1411, 13rspc 2716 . . . . . . . . . . . 12  |-  ( i  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ i  /  k ]_ B  e.  CC )
)
156, 9, 14sylc 61 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  A  C_  ( ZZ>= `  m ) )  /\  i  e.  A )  ->  [_ i  /  k ]_ B  e.  CC )
16 simplr 497 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  A  C_  ( ZZ>= `  m )
)  ->  m  e.  ZZ )
17 zisum.2 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  ZZ )
1817ad2antrr 472 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  A  C_  ( ZZ>= `  m )
)  ->  M  e.  ZZ )
19 simpr 108 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  A  C_  ( ZZ>= `  m )
)  ->  A  C_  ( ZZ>=
`  m ) )
20 zisum.3 . . . . . . . . . . . . 13  |-  ( ph  ->  A  C_  Z )
21 zisum.1 . . . . . . . . . . . . 13  |-  Z  =  ( ZZ>= `  M )
2220, 21syl6sseq 3070 . . . . . . . . . . . 12  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
2322ad2antrr 472 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  A  C_  ( ZZ>= `  m )
)  ->  A  C_  ( ZZ>=
`  M ) )
24 zisum.dc . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A. x  e.  Z DECID  x  e.  A )
2521raleqi 2566 . . . . . . . . . . . . . . . . . 18  |-  ( A. x  e.  Z DECID  x  e.  A 
<-> 
A. x  e.  (
ZZ>= `  M )DECID  x  e.  A )
2624, 25sylib 120 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M )DECID  x  e.  A )
27 eleq1w 2148 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  i  ->  (
x  e.  A  <->  i  e.  A ) )
2827dcbid 786 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  i  ->  (DECID  x  e.  A  <-> DECID  i  e.  A )
)
2928cbvralv 2590 . . . . . . . . . . . . . . . . 17  |-  ( A. x  e.  ( ZZ>= `  M )DECID  x  e.  A  <->  A. i  e.  ( ZZ>= `  M )DECID  i  e.  A )
3026, 29sylib 120 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. i  e.  (
ZZ>= `  M )DECID  i  e.  A )
3130r19.21bi 2461 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  i  e.  ( ZZ>= `  M )
)  -> DECID  i  e.  A
)
3231adantlr 461 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  i  e.  ( ZZ>= `  M )
)  -> DECID  i  e.  A
)
3332adantlr 461 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  A  C_  ( ZZ>= `  m ) )  /\  i  e.  ( ZZ>= `  M ) )  -> DECID  i  e.  A )
3433adantlr 461 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  m  e.  ZZ )  /\  A  C_  ( ZZ>=
`  m ) )  /\  i  e.  (
ZZ>= `  m ) )  /\  i  e.  (
ZZ>= `  M ) )  -> DECID 
i  e.  A )
35 simp-4l 508 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  m  e.  ZZ )  /\  A  C_  ( ZZ>=
`  m ) )  /\  i  e.  (
ZZ>= `  m ) )  /\  -.  i  e.  ( ZZ>= `  M )
)  ->  ph )
36 simpr 108 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  m  e.  ZZ )  /\  A  C_  ( ZZ>=
`  m ) )  /\  i  e.  (
ZZ>= `  m ) )  /\  -.  i  e.  ( ZZ>= `  M )
)  ->  -.  i  e.  ( ZZ>= `  M )
)
3722ssneld 3025 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( -.  i  e.  ( ZZ>= `  M )  ->  -.  i  e.  A
) )
3835, 36, 37sylc 61 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  m  e.  ZZ )  /\  A  C_  ( ZZ>=
`  m ) )  /\  i  e.  (
ZZ>= `  m ) )  /\  -.  i  e.  ( ZZ>= `  M )
)  ->  -.  i  e.  A )
3938olcd 688 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  m  e.  ZZ )  /\  A  C_  ( ZZ>=
`  m ) )  /\  i  e.  (
ZZ>= `  m ) )  /\  -.  i  e.  ( ZZ>= `  M )
)  ->  ( i  e.  A  \/  -.  i  e.  A )
)
40 df-dc 781 . . . . . . . . . . . . 13  |-  (DECID  i  e.  A  <->  ( i  e.  A  \/  -.  i  e.  A ) )
4139, 40sylibr 132 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  m  e.  ZZ )  /\  A  C_  ( ZZ>=
`  m ) )  /\  i  e.  (
ZZ>= `  m ) )  /\  -.  i  e.  ( ZZ>= `  M )
)  -> DECID  i  e.  A
)
42 eluzelz 8997 . . . . . . . . . . . . . 14  |-  ( i  e.  ( ZZ>= `  m
)  ->  i  e.  ZZ )
43 eluzdc 9066 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ZZ  /\  i  e.  ZZ )  -> DECID  i  e.  ( ZZ>= `  M
) )
4418, 42, 43syl2an 283 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  A  C_  ( ZZ>= `  m ) )  /\  i  e.  ( ZZ>= `  m ) )  -> DECID  i  e.  ( ZZ>= `  M )
)
45 exmiddc 782 . . . . . . . . . . . . 13  |-  (DECID  i  e.  ( ZZ>= `  M )  ->  ( i  e.  (
ZZ>= `  M )  \/ 
-.  i  e.  (
ZZ>= `  M ) ) )
4644, 45syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  A  C_  ( ZZ>= `  m ) )  /\  i  e.  ( ZZ>= `  m ) )  -> 
( i  e.  (
ZZ>= `  M )  \/ 
-.  i  e.  (
ZZ>= `  M ) ) )
4734, 41, 46mpjaodan 747 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  A  C_  ( ZZ>= `  m ) )  /\  i  e.  ( ZZ>= `  m ) )  -> DECID  i  e.  A )
485, 15, 16, 18, 19, 23, 47, 33isumrb 10732 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  A  C_  ( ZZ>= `  m )
)  ->  (  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x  <->  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x ) )
4948biimpd 142 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  A  C_  ( ZZ>= `  m )
)  ->  (  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x  ->  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x ) )
5049expimpd 355 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ZZ )  ->  ( ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  ->  seq M (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x ) )
511, 50syl5 32 . . . . . . 7  |-  ( (
ph  /\  m  e.  ZZ )  ->  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  ->  seq M (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x ) )
5251rexlimdva 2489 . . . . . 6  |-  ( ph  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  ->  seq M (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x ) )
53 uzssz 9007 . . . . . . . . . . . . . 14  |-  ( ZZ>= `  M )  C_  ZZ
5422, 53syl6ss 3035 . . . . . . . . . . . . 13  |-  ( ph  ->  A  C_  ZZ )
5554ad2antrr 472 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  A  C_  ZZ )
56 1zzd 8747 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  1  e.  ZZ )
57 simplr 497 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  m  e.  NN )
5857nnzd 8837 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  m  e.  ZZ )
5956, 58fzfigd 9803 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (
1 ... m )  e. 
Fin )
60 simpr 108 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  f : ( 1 ... m ) -1-1-onto-> A )
61 f1oeng 6454 . . . . . . . . . . . . . . 15  |-  ( ( ( 1 ... m
)  e.  Fin  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (
1 ... m )  ~~  A )
6259, 60, 61syl2anc 403 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (
1 ... m )  ~~  A )
6362ensymd 6480 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  A  ~~  ( 1 ... m
) )
64 enfii 6570 . . . . . . . . . . . . 13  |-  ( ( ( 1 ... m
)  e.  Fin  /\  A  ~~  ( 1 ... m ) )  ->  A  e.  Fin )
6559, 63, 64syl2anc 403 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  A  e.  Fin )
66 zfz1iso 10211 . . . . . . . . . . . 12  |-  ( ( A  C_  ZZ  /\  A  e.  Fin )  ->  E. g 
g  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) )
6755, 65, 66syl2anc 403 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  E. g 
g  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) )
68 simpr 108 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )  /\  i  e.  A )  ->  i  e.  A )
698ad3antrrr 476 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )  /\  i  e.  A )  ->  A. k  e.  A  B  e.  CC )
7068, 69, 14sylc 61 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )  /\  i  e.  A )  ->  [_ i  /  k ]_ B  e.  CC )
7131adantlr 461 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  NN )  /\  i  e.  ( ZZ>= `  M )
)  -> DECID  i  e.  A
)
7271adantlr 461 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )  /\  i  e.  ( ZZ>= `  M ) )  -> DECID  i  e.  A )
73 breq1 3840 . . . . . . . . . . . . . . . . 17  |-  ( n  =  j  ->  (
n  <_  ( `  A
)  <->  j  <_  ( `  A ) ) )
74 fveq2 5289 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  j  ->  (
f `  n )  =  ( f `  j ) )
7574csbeq1d 2937 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  j  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( f `  j )  /  k ]_ B )
76 csbco 2940 . . . . . . . . . . . . . . . . . 18  |-  [_ (
f `  j )  /  i ]_ [_ i  /  k ]_ B  =  [_ ( f `  j )  /  k ]_ B
7775, 76syl6eqr 2138 . . . . . . . . . . . . . . . . 17  |-  ( n  =  j  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( f `  j )  /  i ]_ [_ i  /  k ]_ B )
7873, 77ifbieq1d 3409 . . . . . . . . . . . . . . . 16  |-  ( n  =  j  ->  if ( n  <_  ( `  A
) ,  [_ (
f `  n )  /  k ]_ B ,  0 )  =  if ( j  <_ 
( `  A ) , 
[_ ( f `  j )  /  i ]_ [_ i  /  k ]_ B ,  0 ) )
7978cbvmptv 3926 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  |->  if ( n  <_  ( `  A
) ,  [_ (
f `  n )  /  k ]_ B ,  0 ) )  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j )  /  i ]_ [_ i  /  k ]_ B ,  0 ) )
80 eqid 2088 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN  |->  if ( j  <_  m ,  [_ ( g `  j
)  /  i ]_ [_ i  /  k ]_ B ,  0 ) )  =  ( j  e.  NN  |->  if ( j  <_  m ,  [_ ( g `  j
)  /  i ]_ [_ i  /  k ]_ B ,  0 ) )
81 simplr 497 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
f : ( 1 ... m ) -1-1-onto-> A  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) ) )  ->  m  e.  NN )
8217ad2antrr 472 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
f : ( 1 ... m ) -1-1-onto-> A  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) ) )  ->  M  e.  ZZ )
8322ad2antrr 472 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
f : ( 1 ... m ) -1-1-onto-> A  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) ) )  ->  A  C_  ( ZZ>=
`  M ) )
8460adantrr 463 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
f : ( 1 ... m ) -1-1-onto-> A  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) ) )  ->  f : ( 1 ... m ) -1-1-onto-> A )
85 simprr 499 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
f : ( 1 ... m ) -1-1-onto-> A  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) ) )  ->  g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) )
865, 70, 72, 79, 80, 81, 82, 83, 84, 85isummolem2a 10735 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
f : ( 1 ... m ) -1-1-onto-> A  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) ) )  ->  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ,  CC ) `
 m ) )
8759adantrr 463 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
f : ( 1 ... m ) -1-1-onto-> A  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) ) )  ->  ( 1 ... m )  e.  Fin )
8887, 84fihasheqf1od 10163 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
f : ( 1 ... m ) -1-1-onto-> A  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) ) )  ->  ( `  ( 1 ... m ) )  =  ( `  A )
)
8981nnnn0d 8696 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
f : ( 1 ... m ) -1-1-onto-> A  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) ) )  ->  m  e.  NN0 )
90 hashfz1 10156 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  e.  NN0  ->  ( `  (
1 ... m ) )  =  m )
9189, 90syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
f : ( 1 ... m ) -1-1-onto-> A  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) ) )  ->  ( `  ( 1 ... m ) )  =  m )
9288, 91eqtr3d 2122 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
f : ( 1 ... m ) -1-1-onto-> A  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) ) )  ->  ( `  A )  =  m )
9392breq2d 3849 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
f : ( 1 ... m ) -1-1-onto-> A  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) ) )  ->  ( n  <_ 
( `  A )  <->  n  <_  m ) )
9493ifbid 3408 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
f : ( 1 ... m ) -1-1-onto-> A  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) ) )  ->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  0 )  =  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) )
9594mpteq2dv 3921 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
f : ( 1 ... m ) -1-1-onto-> A  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) ) )  ->  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  0 ) )  =  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) )
96 iseqeq3 9825 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) )  =  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) )  ->  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ,  CC )  =  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ,  CC ) )
9795, 96syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
f : ( 1 ... m ) -1-1-onto-> A  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) ) )  ->  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ,  CC )  =  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ,  CC ) )
9897fveq1d 5291 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
f : ( 1 ... m ) -1-1-onto-> A  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) ) )  ->  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ,  CC ) `
 m )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ,  CC ) `
 m ) )
9986, 98breqtrd 3861 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
f : ( 1 ... m ) -1-1-onto-> A  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) ) )  ->  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ,  CC ) `
 m ) )
10099expr 367 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (
g  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A )  ->  seq M (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ,  CC ) `
 m ) ) )
101100exlimdv 1747 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  ( E. g  g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
)  ->  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ,  CC ) `
 m ) ) )
10267, 101mpd 13 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  seq M (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ,  CC ) `
 m ) )
103 breq2 3841 . . . . . . . . . 10  |-  ( x  =  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ,  CC ) `
 m )  -> 
(  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x  <->  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ,  CC ) `
 m ) ) )
104102, 103syl5ibrcom 155 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (
x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ,  CC ) `
 m )  ->  seq M (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x ) )
105104expimpd 355 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ,  CC ) `
 m ) )  ->  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x ) )
106105exlimdv 1747 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ,  CC ) `
 m ) )  ->  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x ) )
107106rexlimdva 2489 . . . . . 6  |-  ( ph  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ,  CC ) `
 m ) )  ->  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x ) )
10852, 107jaod 672 . . . . 5  |-  ( ph  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ,  CC ) `
 m ) ) )  ->  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x ) )
10917adantr 270 . . . . . . . 8  |-  ( (
ph  /\  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  ->  M  e.  ZZ )
11022adantr 270 . . . . . . . 8  |-  ( (
ph  /\  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  ->  A  C_  ( ZZ>= `  M )
)
111 eleq1w 2148 . . . . . . . . . . . 12  |-  ( x  =  j  ->  (
x  e.  A  <->  j  e.  A ) )
112111dcbid 786 . . . . . . . . . . 11  |-  ( x  =  j  ->  (DECID  x  e.  A  <-> DECID  j  e.  A )
)
113112cbvralv 2590 . . . . . . . . . 10  |-  ( A. x  e.  ( ZZ>= `  M )DECID  x  e.  A  <->  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )
11426, 113sylib 120 . . . . . . . . 9  |-  ( ph  ->  A. j  e.  (
ZZ>= `  M )DECID  j  e.  A )
115114adantr 270 . . . . . . . 8  |-  ( (
ph  /\  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  ->  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )
116 simpr 108 . . . . . . . 8  |-  ( (
ph  /\  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  ->  seq M (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )
117 fveq2 5289 . . . . . . . . . . 11  |-  ( m  =  M  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  M )
)
118117sseq2d 3052 . . . . . . . . . 10  |-  ( m  =  M  ->  ( A  C_  ( ZZ>= `  m
)  <->  A  C_  ( ZZ>= `  M ) ) )
119117raleqdv 2568 . . . . . . . . . 10  |-  ( m  =  M  ->  ( A. j  e.  ( ZZ>=
`  m )DECID  j  e.  A  <->  A. j  e.  (
ZZ>= `  M )DECID  j  e.  A ) )
120 iseqeq1 9823 . . . . . . . . . . 11  |-  ( m  =  M  ->  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  =  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC ) )
121120breq1d 3847 . . . . . . . . . 10  |-  ( m  =  M  ->  (  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x  <->  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x ) )
122118, 119, 1213anbi123d 1248 . . . . . . . . 9  |-  ( m  =  M  ->  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  <->  ( A  C_  ( ZZ>= `  M )  /\  A. j  e.  (
ZZ>= `  M )DECID  j  e.  A  /\  seq M
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x ) ) )
123122rspcev 2722 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  ( A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A  /\  seq M (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x ) )  ->  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x ) )
124109, 110, 115, 116, 123syl13anc 1176 . . . . . . 7  |-  ( (
ph  /\  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  ->  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x ) )
125124orcd 687 . . . . . 6  |-  ( (
ph  /\  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ,  CC ) `
 m ) ) ) )
126125ex 113 . . . . 5  |-  ( ph  ->  (  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ,  CC ) `
 m ) ) ) ) )
127108, 126impbid 127 . . . 4  |-  ( ph  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ,  CC ) `
 m ) ) )  <->  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x ) )
128 eluzelz 8997 . . . . . . . 8  |-  ( a  e.  ( ZZ>= `  M
)  ->  a  e.  ZZ )
129 simpr 108 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  ( ZZ>= `  M )
)  /\  a  e.  A )  ->  a  e.  A )
1308ad2antrr 472 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  ( ZZ>= `  M )
)  /\  a  e.  A )  ->  A. k  e.  A  B  e.  CC )
131 nfcsb1v 2961 . . . . . . . . . . . 12  |-  F/_ k [_ a  /  k ]_ B
132131nfel1 2239 . . . . . . . . . . 11  |-  F/ k
[_ a  /  k ]_ B  e.  CC
133 csbeq1a 2939 . . . . . . . . . . . 12  |-  ( k  =  a  ->  B  =  [_ a  /  k ]_ B )
134133eleq1d 2156 . . . . . . . . . . 11  |-  ( k  =  a  ->  ( B  e.  CC  <->  [_ a  / 
k ]_ B  e.  CC ) )
135132, 134rspc 2716 . . . . . . . . . 10  |-  ( a  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ a  /  k ]_ B  e.  CC )
)
136129, 130, 135sylc 61 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  ( ZZ>= `  M )
)  /\  a  e.  A )  ->  [_ a  /  k ]_ B  e.  CC )
137 0cnd 7460 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  ( ZZ>= `  M )
)  /\  -.  a  e.  A )  ->  0  e.  CC )
138 eleq1w 2148 . . . . . . . . . . . . 13  |-  ( x  =  a  ->  (
x  e.  A  <->  a  e.  A ) )
139138dcbid 786 . . . . . . . . . . . 12  |-  ( x  =  a  ->  (DECID  x  e.  A  <-> DECID  a  e.  A )
)
140139cbvralv 2590 . . . . . . . . . . 11  |-  ( A. x  e.  ( ZZ>= `  M )DECID  x  e.  A  <->  A. a  e.  ( ZZ>= `  M )DECID  a  e.  A )
14126, 140sylib 120 . . . . . . . . . 10  |-  ( ph  ->  A. a  e.  (
ZZ>= `  M )DECID  a  e.  A )
142141r19.21bi 2461 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ZZ>= `  M )
)  -> DECID  a  e.  A
)
143136, 137, 142ifcldadc 3416 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( ZZ>= `  M )
)  ->  if (
a  e.  A ,  [_ a  /  k ]_ B ,  0 )  e.  CC )
144 eleq1w 2148 . . . . . . . . . 10  |-  ( n  =  a  ->  (
n  e.  A  <->  a  e.  A ) )
145 csbeq1 2934 . . . . . . . . . 10  |-  ( n  =  a  ->  [_ n  /  k ]_ B  =  [_ a  /  k ]_ B )
146144, 145ifbieq1d 3409 . . . . . . . . 9  |-  ( n  =  a  ->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )  =  if ( a  e.  A ,  [_ a  /  k ]_ B ,  0 ) )
147 eqid 2088 . . . . . . . . 9  |-  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )  =  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )
148146, 147fvmptg 5364 . . . . . . . 8  |-  ( ( a  e.  ZZ  /\  if ( a  e.  A ,  [_ a  /  k ]_ B ,  0 )  e.  CC )  -> 
( ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) `
 a )  =  if ( a  e.  A ,  [_ a  /  k ]_ B ,  0 ) )
149128, 143, 148syl2an2 561 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) `  a )  =  if ( a  e.  A ,  [_ a  /  k ]_ B ,  0 ) )
150149, 143eqeltrd 2164 . . . . . 6  |-  ( (
ph  /\  a  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) `  a )  e.  CC )
151 simpr 108 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( ZZ>= `  M )
)  ->  j  e.  ( ZZ>= `  M )
)
15253, 151sseldi 3021 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( ZZ>= `  M )
)  ->  j  e.  ZZ )
153 vex 2622 . . . . . . . . . 10  |-  j  e. 
_V
154 nfv 1466 . . . . . . . . . . 11  |-  F/ k  j  e.  A
155 nfcsb1v 2961 . . . . . . . . . . 11  |-  F/_ k [_ j  /  k ]_ B
156 nfcv 2228 . . . . . . . . . . 11  |-  F/_ k
0
157154, 155, 156nfif 3415 . . . . . . . . . 10  |-  F/_ k if ( j  e.  A ,  [_ j  /  k ]_ B ,  0 )
158 eleq1w 2148 . . . . . . . . . . 11  |-  ( k  =  j  ->  (
k  e.  A  <->  j  e.  A ) )
159 csbeq1a 2939 . . . . . . . . . . 11  |-  ( k  =  j  ->  B  =  [_ j  /  k ]_ B )
160158, 159ifbieq1d 3409 . . . . . . . . . 10  |-  ( k  =  j  ->  if ( k  e.  A ,  B ,  0 )  =  if ( j  e.  A ,  [_ j  /  k ]_ B ,  0 ) )
161153, 157, 160csbief 2970 . . . . . . . . 9  |-  [_ j  /  k ]_ if ( k  e.  A ,  B ,  0 )  =  if ( j  e.  A ,  [_ j  /  k ]_ B ,  0 )
162 simpr 108 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  M )
)  /\  j  e.  A )  ->  j  e.  A )
1638ad2antrr 472 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  M )
)  /\  j  e.  A )  ->  A. k  e.  A  B  e.  CC )
164155nfel1 2239 . . . . . . . . . . . 12  |-  F/ k
[_ j  /  k ]_ B  e.  CC
165159eleq1d 2156 . . . . . . . . . . . 12  |-  ( k  =  j  ->  ( B  e.  CC  <->  [_ j  / 
k ]_ B  e.  CC ) )
166164, 165rspc 2716 . . . . . . . . . . 11  |-  ( j  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ j  /  k ]_ B  e.  CC )
)
167162, 163, 166sylc 61 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  M )
)  /\  j  e.  A )  ->  [_ j  /  k ]_ B  e.  CC )
168 0cnd 7460 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  M )
)  /\  -.  j  e.  A )  ->  0  e.  CC )
169114r19.21bi 2461 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( ZZ>= `  M )
)  -> DECID  j  e.  A
)
170167, 168, 169ifcldadc 3416 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( ZZ>= `  M )
)  ->  if (
j  e.  A ,  [_ j  /  k ]_ B ,  0 )  e.  CC )
171161, 170syl5eqel 2174 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( ZZ>= `  M )
)  ->  [_ j  / 
k ]_ if ( k  e.  A ,  B ,  0 )  e.  CC )
172 nfcv 2228 . . . . . . . . . . 11  |-  F/_ n if ( k  e.  A ,  B ,  0 )
173 nfv 1466 . . . . . . . . . . . 12  |-  F/ k  n  e.  A
174 nfcsb1v 2961 . . . . . . . . . . . 12  |-  F/_ k [_ n  /  k ]_ B
175173, 174, 156nfif 3415 . . . . . . . . . . 11  |-  F/_ k if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )
176 eleq1w 2148 . . . . . . . . . . . 12  |-  ( k  =  n  ->  (
k  e.  A  <->  n  e.  A ) )
177 csbeq1a 2939 . . . . . . . . . . . 12  |-  ( k  =  n  ->  B  =  [_ n  /  k ]_ B )
178176, 177ifbieq1d 3409 . . . . . . . . . . 11  |-  ( k  =  n  ->  if ( k  e.  A ,  B ,  0 )  =  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )
179172, 175, 178cbvmpt 3925 . . . . . . . . . 10  |-  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )  =  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )
180179eqcomi 2092 . . . . . . . . 9  |-  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
181180fvmpts 5366 . . . . . . . 8  |-  ( ( j  e.  ZZ  /\  [_ j  /  k ]_ if ( k  e.  A ,  B ,  0 )  e.  CC )  -> 
( ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) `
 j )  = 
[_ j  /  k ]_ if ( k  e.  A ,  B , 
0 ) )
182152, 171, 181syl2anc 403 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) `  j )  =  [_ j  / 
k ]_ if ( k  e.  A ,  B ,  0 ) )
183151, 21syl6eleqr 2181 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( ZZ>= `  M )
)  ->  j  e.  Z )
184 zisum.4 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
0 ) )
185184ralrimiva 2446 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  Z  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )
186185adantr 270 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( ZZ>= `  M )
)  ->  A. k  e.  Z  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )
187 nfcsb1v 2961 . . . . . . . . . 10  |-  F/_ k [_ j  /  k ]_ if ( k  e.  A ,  B , 
0 )
188187nfeq2 2240 . . . . . . . . 9  |-  F/ k ( F `  j
)  =  [_ j  /  k ]_ if ( k  e.  A ,  B ,  0 )
189 fveq2 5289 . . . . . . . . . 10  |-  ( k  =  j  ->  ( F `  k )  =  ( F `  j ) )
190 csbeq1a 2939 . . . . . . . . . 10  |-  ( k  =  j  ->  if ( k  e.  A ,  B ,  0 )  =  [_ j  / 
k ]_ if ( k  e.  A ,  B ,  0 ) )
191189, 190eqeq12d 2102 . . . . . . . . 9  |-  ( k  =  j  ->  (
( F `  k
)  =  if ( k  e.  A ,  B ,  0 )  <-> 
( F `  j
)  =  [_ j  /  k ]_ if ( k  e.  A ,  B ,  0 ) ) )
192188, 191rspc 2716 . . . . . . . 8  |-  ( j  e.  Z  ->  ( A. k  e.  Z  ( F `  k )  =  if ( k  e.  A ,  B ,  0 )  -> 
( F `  j
)  =  [_ j  /  k ]_ if ( k  e.  A ,  B ,  0 ) ) )
193183, 186, 192sylc 61 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  M )
)  ->  ( F `  j )  =  [_ j  /  k ]_ if ( k  e.  A ,  B ,  0 ) )
194182, 193eqtr4d 2123 . . . . . 6  |-  ( (
ph  /\  j  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) `  j )  =  ( F `  j ) )
195 addcl 7446 . . . . . . 7  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( a  +  b )  e.  CC )
196195adantl 271 . . . . . 6  |-  ( (
ph  /\  ( a  e.  CC  /\  b  e.  CC ) )  -> 
( a  +  b )  e.  CC )
19717, 150, 194, 196iseqfeq 9861 . . . . 5  |-  ( ph  ->  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  =  seq M (  +  ,  F ,  CC ) )
198197breq1d 3847 . . . 4  |-  ( ph  ->  (  seq M (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x  <->  seq M (  +  ,  F ,  CC ) 
~~>  x ) )
199127, 198bitrd 186 . . 3  |-  ( ph  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ,  CC ) `
 m ) ) )  <->  seq M (  +  ,  F ,  CC ) 
~~>  x ) )
200199iotabidv 4988 . 2  |-  ( ph  ->  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ,  CC ) `
 m ) ) ) )  =  ( iota x  seq M
(  +  ,  F ,  CC )  ~~>  x ) )
201 df-isum 10707 . 2  |-  sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ,  CC ) `
 m ) ) ) )
202 df-fv 5010 . 2  |-  (  ~~>  `  seq M (  +  ,  F ,  CC )
)  =  ( iota
x  seq M (  +  ,  F ,  CC ) 
~~>  x )
203200, 201, 2023eqtr4g 2145 1  |-  ( ph  -> 
sum_ k  e.  A  B  =  (  ~~>  `  seq M (  +  ,  F ,  CC )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    \/ wo 664  DECID wdc 780    /\ w3a 924    = wceq 1289   E.wex 1426    e. wcel 1438   A.wral 2359   E.wrex 2360   [_csb 2931    C_ wss 2997   ifcif 3389   class class class wbr 3837    |-> cmpt 3891   iotacio 4965   -1-1-onto->wf1o 5001   ` cfv 5002    Isom wiso 5003  (class class class)co 5634    ~~ cen 6435   Fincfn 6437   CCcc 7327   0cc0 7329   1c1 7330    + caddc 7332    < clt 7501    <_ cle 7502   NNcn 8394   NN0cn0 8643   ZZcz 8720   ZZ>=cuz 8988   ...cfz 9393    seqcseq4 9816  ♯chash 10148    ~~> cli 10630   sum_csu 10706
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-if 3390  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-ilim 4187  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-isom 5011  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-irdg 6117  df-frec 6138  df-1o 6163  df-oadd 6167  df-er 6272  df-en 6438  df-dom 6439  df-fin 6440  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-2 8452  df-n0 8644  df-z 8721  df-uz 8989  df-q 9074  df-rp 9104  df-fz 9394  df-fzo 9519  df-iseq 9818  df-seq3 9819  df-exp 9920  df-ihash 10149  df-cj 10241  df-rsqrt 10396  df-abs 10397  df-clim 10631  df-isum 10707
This theorem is referenced by:  iisum  10739  sum0  10744  isumz  10745  isumss  10747  fisumsers  10751
  Copyright terms: Public domain W3C validator