![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bi1 | GIF version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Revised by NM, 31-Jan-2015.) |
Ref | Expression |
---|---|
bi1 | ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bi 116 | . . 3 ⊢ (((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) ∧ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
2 | 1 | simpli 110 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
3 | 2 | simpld 111 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: biimpi 119 bicom1 130 biimpd 143 ibd 177 pm5.74 178 bi3ant 223 pm5.501 243 pm5.32d 443 notbi 638 pm5.19 678 con4biddc 825 con1biimdc 841 bijadc 850 pclem6 1335 albi 1427 exbi 1566 equsexd 1690 cbv2h 1707 sbiedh 1743 eumo0 2006 ceqsalt 2683 vtoclgft 2707 spcgft 2734 pm13.183 2792 reu6 2842 reu3 2843 sbciegft 2907 ddifstab 3174 exmidsssnc 4086 fv3 5398 prnmaxl 7244 prnminu 7245 elabgft1 12677 elabgf2 12679 bj-axemptylem 12782 bj-inf2vn 12864 bj-inf2vn2 12865 bj-nn0sucALT 12868 |
Copyright terms: Public domain | W3C validator |