ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bi2 GIF version

Theorem bi2 129
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Proof shortened by Wolf Lammen, 11-Nov-2012.)
Assertion
Ref Expression
bi2 ((𝜑𝜓) → (𝜓𝜑))

Proof of Theorem bi2
StepHypRef Expression
1 df-bi 116 . . 3 (((𝜑𝜓) → ((𝜑𝜓) ∧ (𝜓𝜑))) ∧ (((𝜑𝜓) ∧ (𝜓𝜑)) → (𝜑𝜓)))
21simpli 110 . 2 ((𝜑𝜓) → ((𝜑𝜓) ∧ (𝜓𝜑)))
32simprd 113 1 ((𝜑𝜓) → (𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  bicom1  130  pm5.74  178  bi3ant  223  pm5.32d  441  nbn2  654  pm4.72  778  con4biddc  798  con1biimdc  811  bijadc  820  pclem6  1320  exbir  1380  simplbi2comg  1387  albi  1412  exbi  1551  equsexd  1675  cbv2h  1692  sbiedh  1728  ceqsalt  2667  spcegft  2720  elab3gf  2787  euind  2824  reu6  2826  reuind  2842  sbciegft  2891  iota4  5042  fv3  5376  algcvgblem  11523  bj-notbi  12704  bj-inf2vnlem1  12753
  Copyright terms: Public domain W3C validator