![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bi2 | GIF version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
Ref | Expression |
---|---|
bi2 | ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bi 116 | . . 3 ⊢ (((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) ∧ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
2 | 1 | simpli 110 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
3 | 2 | simprd 113 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bicom1 130 pm5.74 178 bi3ant 223 pm5.32d 441 nbn2 654 pm4.72 778 con4biddc 798 con1biimdc 811 bijadc 820 pclem6 1320 exbir 1380 simplbi2comg 1387 albi 1412 exbi 1551 equsexd 1675 cbv2h 1692 sbiedh 1728 ceqsalt 2667 spcegft 2720 elab3gf 2787 euind 2824 reu6 2826 reuind 2842 sbciegft 2891 iota4 5042 fv3 5376 algcvgblem 11523 bj-notbi 12704 bj-inf2vnlem1 12753 |
Copyright terms: Public domain | W3C validator |