ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvmpt2 GIF version

Theorem cbvmpt2 5743
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by NM, 17-Dec-2013.)
Hypotheses
Ref Expression
cbvmpt2.1 𝑧𝐶
cbvmpt2.2 𝑤𝐶
cbvmpt2.3 𝑥𝐷
cbvmpt2.4 𝑦𝐷
cbvmpt2.5 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐷)
Assertion
Ref Expression
cbvmpt2 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐵𝐷)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐵,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cbvmpt2
StepHypRef Expression
1 nfcv 2229 . 2 𝑧𝐵
2 nfcv 2229 . 2 𝑥𝐵
3 cbvmpt2.1 . 2 𝑧𝐶
4 cbvmpt2.2 . 2 𝑤𝐶
5 cbvmpt2.3 . 2 𝑥𝐷
6 cbvmpt2.4 . 2 𝑦𝐷
7 eqidd 2090 . 2 (𝑥 = 𝑧𝐵 = 𝐵)
8 cbvmpt2.5 . 2 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐷)
91, 2, 3, 4, 5, 6, 7, 8cbvmpt2x 5742 1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐵𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1290  wnfc 2216  cmpt2 5670
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-v 2624  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-opab 3908  df-oprab 5672  df-mpt2 5673
This theorem is referenced by:  cbvmpt2v  5744  fmpt2co  5997  xpf1o  6616
  Copyright terms: Public domain W3C validator