ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clim2iser GIF version

Theorem clim2iser 10563
Description: The limit of an infinite series with an initial segment removed. (Contributed by Jim Kingdon, 20-Aug-2021.)
Hypotheses
Ref Expression
clim2ser.1 𝑍 = (ℤ𝑀)
clim2ser.2 (𝜑𝑁𝑍)
clim2ser.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
clim2ser.5 (𝜑 → seq𝑀( + , 𝐹, ℂ) ⇝ 𝐴)
Assertion
Ref Expression
clim2iser (𝜑 → seq(𝑁 + 1)( + , 𝐹, ℂ) ⇝ (𝐴 − (seq𝑀( + , 𝐹, ℂ)‘𝑁)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘   𝑘,𝑍

Proof of Theorem clim2iser
Dummy variables 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2085 . 2 (ℤ‘(𝑁 + 1)) = (ℤ‘(𝑁 + 1))
2 clim2ser.2 . . . . 5 (𝜑𝑁𝑍)
3 clim2ser.1 . . . . 5 𝑍 = (ℤ𝑀)
42, 3syl6eleq 2177 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
5 peano2uz 8980 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
64, 5syl 14 . . 3 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))
7 eluzelz 8937 . . 3 ((𝑁 + 1) ∈ (ℤ𝑀) → (𝑁 + 1) ∈ ℤ)
86, 7syl 14 . 2 (𝜑 → (𝑁 + 1) ∈ ℤ)
9 clim2ser.5 . 2 (𝜑 → seq𝑀( + , 𝐹, ℂ) ⇝ 𝐴)
10 eluzel2 8933 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
114, 10syl 14 . . . 4 (𝜑𝑀 ∈ ℤ)
12 clim2ser.4 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
133, 11, 12iserf 9782 . . 3 (𝜑 → seq𝑀( + , 𝐹, ℂ):𝑍⟶ℂ)
1413, 2ffvelrnd 5383 . 2 (𝜑 → (seq𝑀( + , 𝐹, ℂ)‘𝑁) ∈ ℂ)
15 iseqex 9756 . . 3 seq(𝑁 + 1)( + , 𝐹, ℂ) ∈ V
1615a1i 9 . 2 (𝜑 → seq(𝑁 + 1)( + , 𝐹, ℂ) ∈ V)
1713adantr 270 . . 3 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → seq𝑀( + , 𝐹, ℂ):𝑍⟶ℂ)
186, 3syl6eleqr 2178 . . . 4 (𝜑 → (𝑁 + 1) ∈ 𝑍)
193uztrn2 8945 . . . 4 (((𝑁 + 1) ∈ 𝑍𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑗𝑍)
2018, 19sylan 277 . . 3 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑗𝑍)
2117, 20ffvelrnd 5383 . 2 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( + , 𝐹, ℂ)‘𝑗) ∈ ℂ)
22 addcl 7388 . . . . . 6 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 + 𝑥) ∈ ℂ)
2322adantl 271 . . . . 5 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 + 𝑥) ∈ ℂ)
24 addass 7393 . . . . . 6 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑘 + 𝑥) + 𝑦) = (𝑘 + (𝑥 + 𝑦)))
2524adantl 271 . . . . 5 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑘 + 𝑥) + 𝑦) = (𝑘 + (𝑥 + 𝑦)))
26 simpr 108 . . . . 5 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑗 ∈ (ℤ‘(𝑁 + 1)))
27 cnex 7387 . . . . . 6 ℂ ∈ V
2827a1i 9 . . . . 5 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → ℂ ∈ V)
294adantr 270 . . . . 5 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ (ℤ𝑀))
303eleq2i 2151 . . . . . . 7 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
3130, 12sylan2br 282 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
3231adantlr 461 . . . . 5 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
3323, 25, 26, 28, 29, 32iseqsplit 9787 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( + , 𝐹, ℂ)‘𝑗) = ((seq𝑀( + , 𝐹, ℂ)‘𝑁) + (seq(𝑁 + 1)( + , 𝐹, ℂ)‘𝑗)))
3433oveq1d 5609 . . 3 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → ((seq𝑀( + , 𝐹, ℂ)‘𝑗) − (seq𝑀( + , 𝐹, ℂ)‘𝑁)) = (((seq𝑀( + , 𝐹, ℂ)‘𝑁) + (seq(𝑁 + 1)( + , 𝐹, ℂ)‘𝑗)) − (seq𝑀( + , 𝐹, ℂ)‘𝑁)))
3514adantr 270 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( + , 𝐹, ℂ)‘𝑁) ∈ ℂ)
363uztrn2 8945 . . . . . . . 8 (((𝑁 + 1) ∈ 𝑍𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘𝑍)
3718, 36sylan 277 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘𝑍)
3837, 12syldan 276 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝐹𝑘) ∈ ℂ)
391, 8, 38iserf 9782 . . . . 5 (𝜑 → seq(𝑁 + 1)( + , 𝐹, ℂ):(ℤ‘(𝑁 + 1))⟶ℂ)
4039ffvelrnda 5382 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( + , 𝐹, ℂ)‘𝑗) ∈ ℂ)
4135, 40pncan2d 7716 . . 3 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (((seq𝑀( + , 𝐹, ℂ)‘𝑁) + (seq(𝑁 + 1)( + , 𝐹, ℂ)‘𝑗)) − (seq𝑀( + , 𝐹, ℂ)‘𝑁)) = (seq(𝑁 + 1)( + , 𝐹, ℂ)‘𝑗))
4234, 41eqtr2d 2118 . 2 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( + , 𝐹, ℂ)‘𝑗) = ((seq𝑀( + , 𝐹, ℂ)‘𝑗) − (seq𝑀( + , 𝐹, ℂ)‘𝑁)))
431, 8, 9, 14, 16, 21, 42climsubc1 10558 1 (𝜑 → seq(𝑁 + 1)( + , 𝐹, ℂ) ⇝ (𝐴 − (seq𝑀( + , 𝐹, ℂ)‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 922   = wceq 1287  wcel 1436  Vcvv 2614   class class class wbr 3814  wf 4968  cfv 4972  (class class class)co 5594  cc 7269  1c1 7272   + caddc 7274  cmin 7574  cz 8660  cuz 8928  seqcseq 9754  cli 10505
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3922  ax-sep 3925  ax-nul 3933  ax-pow 3977  ax-pr 4003  ax-un 4227  ax-setind 4319  ax-iinf 4369  ax-cnex 7357  ax-resscn 7358  ax-1cn 7359  ax-1re 7360  ax-icn 7361  ax-addcl 7362  ax-addrcl 7363  ax-mulcl 7364  ax-mulrcl 7365  ax-addcom 7366  ax-mulcom 7367  ax-addass 7368  ax-mulass 7369  ax-distr 7370  ax-i2m1 7371  ax-0lt1 7372  ax-1rid 7373  ax-0id 7374  ax-rnegex 7375  ax-precex 7376  ax-cnre 7377  ax-pre-ltirr 7378  ax-pre-ltwlin 7379  ax-pre-lttrn 7380  ax-pre-apti 7381  ax-pre-ltadd 7382  ax-pre-mulgt0 7383  ax-pre-mulext 7384  ax-arch 7385  ax-caucvg 7386
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2616  df-sbc 2829  df-csb 2922  df-dif 2988  df-un 2990  df-in 2992  df-ss 2999  df-nul 3273  df-if 3377  df-pw 3411  df-sn 3431  df-pr 3432  df-op 3434  df-uni 3631  df-int 3666  df-iun 3709  df-br 3815  df-opab 3869  df-mpt 3870  df-tr 3905  df-id 4087  df-po 4090  df-iso 4091  df-iord 4160  df-on 4162  df-ilim 4163  df-suc 4165  df-iom 4372  df-xp 4410  df-rel 4411  df-cnv 4412  df-co 4413  df-dm 4414  df-rn 4415  df-res 4416  df-ima 4417  df-iota 4937  df-fun 4974  df-fn 4975  df-f 4976  df-f1 4977  df-fo 4978  df-f1o 4979  df-fv 4980  df-riota 5550  df-ov 5597  df-oprab 5598  df-mpt2 5599  df-1st 5849  df-2nd 5850  df-recs 6005  df-frec 6091  df-pnf 7445  df-mnf 7446  df-xr 7447  df-ltxr 7448  df-le 7449  df-sub 7576  df-neg 7577  df-reap 7970  df-ap 7977  df-div 8056  df-inn 8335  df-2 8393  df-3 8394  df-4 8395  df-n0 8584  df-z 8661  df-uz 8929  df-rp 9044  df-fz 9334  df-iseq 9755  df-iexp 9806  df-cj 10117  df-re 10118  df-im 10119  df-rsqrt 10272  df-abs 10273  df-clim 10506
This theorem is referenced by:  iiserex  10565
  Copyright terms: Public domain W3C validator