ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clim2iser2 GIF version

Theorem clim2iser2 10549
Description: The limit of an infinite series with an initial segment added. (Contributed by Jim Kingdon, 21-Aug-2021.)
Hypotheses
Ref Expression
clim2ser.1 𝑍 = (ℤ𝑀)
clim2ser.2 (𝜑𝑁𝑍)
clim2ser.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
clim2ser2.5 (𝜑 → seq(𝑁 + 1)( + , 𝐹, ℂ) ⇝ 𝐴)
Assertion
Ref Expression
clim2iser2 (𝜑 → seq𝑀( + , 𝐹, ℂ) ⇝ (𝐴 + (seq𝑀( + , 𝐹, ℂ)‘𝑁)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘   𝑘,𝑍

Proof of Theorem clim2iser2
Dummy variables 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2083 . 2 (ℤ‘(𝑁 + 1)) = (ℤ‘(𝑁 + 1))
2 clim2ser.2 . . . . 5 (𝜑𝑁𝑍)
3 clim2ser.1 . . . . 5 𝑍 = (ℤ𝑀)
42, 3syl6eleq 2175 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
5 peano2uz 8965 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
64, 5syl 14 . . 3 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))
7 eluzelz 8922 . . 3 ((𝑁 + 1) ∈ (ℤ𝑀) → (𝑁 + 1) ∈ ℤ)
86, 7syl 14 . 2 (𝜑 → (𝑁 + 1) ∈ ℤ)
9 clim2ser2.5 . 2 (𝜑 → seq(𝑁 + 1)( + , 𝐹, ℂ) ⇝ 𝐴)
10 eluzel2 8918 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
114, 10syl 14 . . . 4 (𝜑𝑀 ∈ ℤ)
12 clim2ser.4 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
133, 11, 12iserf 9767 . . 3 (𝜑 → seq𝑀( + , 𝐹, ℂ):𝑍⟶ℂ)
1413, 2ffvelrnd 5379 . 2 (𝜑 → (seq𝑀( + , 𝐹, ℂ)‘𝑁) ∈ ℂ)
15 iseqex 9741 . . 3 seq𝑀( + , 𝐹, ℂ) ∈ V
1615a1i 9 . 2 (𝜑 → seq𝑀( + , 𝐹, ℂ) ∈ V)
176, 3syl6eleqr 2176 . . . . . 6 (𝜑 → (𝑁 + 1) ∈ 𝑍)
183uztrn2 8930 . . . . . 6 (((𝑁 + 1) ∈ 𝑍𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘𝑍)
1917, 18sylan 277 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘𝑍)
2019, 12syldan 276 . . . 4 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝐹𝑘) ∈ ℂ)
211, 8, 20iserf 9767 . . 3 (𝜑 → seq(𝑁 + 1)( + , 𝐹, ℂ):(ℤ‘(𝑁 + 1))⟶ℂ)
2221ffvelrnda 5378 . 2 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( + , 𝐹, ℂ)‘𝑗) ∈ ℂ)
23 addcl 7369 . . . . 5 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 + 𝑥) ∈ ℂ)
2423adantl 271 . . . 4 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 + 𝑥) ∈ ℂ)
25 addass 7374 . . . . 5 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑘 + 𝑥) + 𝑦) = (𝑘 + (𝑥 + 𝑦)))
2625adantl 271 . . . 4 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑘 + 𝑥) + 𝑦) = (𝑘 + (𝑥 + 𝑦)))
27 simpr 108 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑗 ∈ (ℤ‘(𝑁 + 1)))
28 cnex 7368 . . . . 5 ℂ ∈ V
2928a1i 9 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → ℂ ∈ V)
304adantr 270 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ (ℤ𝑀))
313eleq2i 2149 . . . . . 6 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
3231, 12sylan2br 282 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
3332adantlr 461 . . . 4 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
3424, 26, 27, 29, 30, 33iseqsplit 9772 . . 3 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( + , 𝐹, ℂ)‘𝑗) = ((seq𝑀( + , 𝐹, ℂ)‘𝑁) + (seq(𝑁 + 1)( + , 𝐹, ℂ)‘𝑗)))
3514adantr 270 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( + , 𝐹, ℂ)‘𝑁) ∈ ℂ)
3635, 22addcomd 7535 . . 3 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → ((seq𝑀( + , 𝐹, ℂ)‘𝑁) + (seq(𝑁 + 1)( + , 𝐹, ℂ)‘𝑗)) = ((seq(𝑁 + 1)( + , 𝐹, ℂ)‘𝑗) + (seq𝑀( + , 𝐹, ℂ)‘𝑁)))
3734, 36eqtrd 2115 . 2 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( + , 𝐹, ℂ)‘𝑗) = ((seq(𝑁 + 1)( + , 𝐹, ℂ)‘𝑗) + (seq𝑀( + , 𝐹, ℂ)‘𝑁)))
381, 8, 9, 14, 16, 22, 37climaddc1 10540 1 (𝜑 → seq𝑀( + , 𝐹, ℂ) ⇝ (𝐴 + (seq𝑀( + , 𝐹, ℂ)‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 920   = wceq 1285  wcel 1434  Vcvv 2612   class class class wbr 3811  cfv 4968  (class class class)co 5590  cc 7250  1c1 7253   + caddc 7255  cz 8645  cuz 8913  seqcseq 9739  cli 10490
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-iinf 4365  ax-cnex 7338  ax-resscn 7339  ax-1cn 7340  ax-1re 7341  ax-icn 7342  ax-addcl 7343  ax-addrcl 7344  ax-mulcl 7345  ax-mulrcl 7346  ax-addcom 7347  ax-mulcom 7348  ax-addass 7349  ax-mulass 7350  ax-distr 7351  ax-i2m1 7352  ax-0lt1 7353  ax-1rid 7354  ax-0id 7355  ax-rnegex 7356  ax-precex 7357  ax-cnre 7358  ax-pre-ltirr 7359  ax-pre-ltwlin 7360  ax-pre-lttrn 7361  ax-pre-apti 7362  ax-pre-ltadd 7363  ax-pre-mulgt0 7364  ax-pre-mulext 7365  ax-arch 7366  ax-caucvg 7367
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-if 3374  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4083  df-po 4086  df-iso 4087  df-iord 4156  df-on 4158  df-ilim 4159  df-suc 4161  df-iom 4368  df-xp 4406  df-rel 4407  df-cnv 4408  df-co 4409  df-dm 4410  df-rn 4411  df-res 4412  df-ima 4413  df-iota 4933  df-fun 4970  df-fn 4971  df-f 4972  df-f1 4973  df-fo 4974  df-f1o 4975  df-fv 4976  df-riota 5546  df-ov 5593  df-oprab 5594  df-mpt2 5595  df-1st 5845  df-2nd 5846  df-recs 6001  df-frec 6087  df-pnf 7426  df-mnf 7427  df-xr 7428  df-ltxr 7429  df-le 7430  df-sub 7557  df-neg 7558  df-reap 7951  df-ap 7958  df-div 8037  df-inn 8316  df-2 8374  df-3 8375  df-4 8376  df-n0 8565  df-z 8646  df-uz 8914  df-rp 9029  df-fz 9319  df-iseq 9740  df-iexp 9791  df-cj 10102  df-re 10103  df-im 10104  df-rsqrt 10257  df-abs 10258  df-clim 10491
This theorem is referenced by:  iiserex  10550
  Copyright terms: Public domain W3C validator