![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > climserile | GIF version |
Description: The partial sums of a converging infinite series with nonnegative terms are bounded by its limit. (Contributed by Jim Kingdon, 22-Aug-2021.) |
Ref | Expression |
---|---|
clim2ser.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climserile.2 | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
climserile.3 | ⊢ (𝜑 → seq𝑀( + , 𝐹, ℂ) ⇝ 𝐴) |
climserile.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
climserile.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) |
Ref | Expression |
---|---|
climserile | ⊢ (𝜑 → (seq𝑀( + , 𝐹, ℂ)‘𝑁) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clim2ser.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climserile.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
3 | climserile.3 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹, ℂ) ⇝ 𝐴) | |
4 | 2, 1 | syl6eleq 2175 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
5 | eluzel2 8919 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
6 | 4, 5 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
7 | climserile.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) | |
8 | 1, 6, 7 | iserfre 9769 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹, ℝ):𝑍⟶ℝ) |
9 | cnex 7369 | . . . . . . 7 ⊢ ℂ ∈ V | |
10 | 9 | a1i 9 | . . . . . 6 ⊢ (𝜑 → ℂ ∈ V) |
11 | ax-resscn 7340 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
12 | 11 | a1i 9 | . . . . . 6 ⊢ (𝜑 → ℝ ⊆ ℂ) |
13 | 1 | eleq2i 2149 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ≥‘𝑀)) |
14 | 13, 7 | sylan2br 282 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℝ) |
15 | readdcl 7371 | . . . . . . 7 ⊢ ((𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑘 + 𝑥) ∈ ℝ) | |
16 | 15 | adantl 271 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ)) → (𝑘 + 𝑥) ∈ ℝ) |
17 | addcl 7370 | . . . . . . 7 ⊢ ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 + 𝑥) ∈ ℂ) | |
18 | 17 | adantl 271 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 + 𝑥) ∈ ℂ) |
19 | 6, 10, 12, 14, 16, 18 | iseqss 9760 | . . . . 5 ⊢ (𝜑 → seq𝑀( + , 𝐹, ℝ) = seq𝑀( + , 𝐹, ℂ)) |
20 | 19 | feq1d 5102 | . . . 4 ⊢ (𝜑 → (seq𝑀( + , 𝐹, ℝ):𝑍⟶ℝ ↔ seq𝑀( + , 𝐹, ℂ):𝑍⟶ℝ)) |
21 | 8, 20 | mpbid 145 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹, ℂ):𝑍⟶ℝ) |
22 | 21 | ffvelrnda 5379 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹, ℂ)‘𝑗) ∈ ℝ) |
23 | 1 | peano2uzs 8967 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 → (𝑗 + 1) ∈ 𝑍) |
24 | fveq2 5253 | . . . . . . . . 9 ⊢ (𝑘 = (𝑗 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑗 + 1))) | |
25 | 24 | breq2d 3823 | . . . . . . . 8 ⊢ (𝑘 = (𝑗 + 1) → (0 ≤ (𝐹‘𝑘) ↔ 0 ≤ (𝐹‘(𝑗 + 1)))) |
26 | 25 | imbi2d 228 | . . . . . . 7 ⊢ (𝑘 = (𝑗 + 1) → ((𝜑 → 0 ≤ (𝐹‘𝑘)) ↔ (𝜑 → 0 ≤ (𝐹‘(𝑗 + 1))))) |
27 | climserile.5 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) | |
28 | 27 | expcom 114 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 → (𝜑 → 0 ≤ (𝐹‘𝑘))) |
29 | 26, 28 | vtoclga 2675 | . . . . . 6 ⊢ ((𝑗 + 1) ∈ 𝑍 → (𝜑 → 0 ≤ (𝐹‘(𝑗 + 1)))) |
30 | 29 | impcom 123 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 + 1) ∈ 𝑍) → 0 ≤ (𝐹‘(𝑗 + 1))) |
31 | 23, 30 | sylan2 280 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 0 ≤ (𝐹‘(𝑗 + 1))) |
32 | 24 | eleq1d 2151 | . . . . . . . . 9 ⊢ (𝑘 = (𝑗 + 1) → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘(𝑗 + 1)) ∈ ℝ)) |
33 | 32 | imbi2d 228 | . . . . . . . 8 ⊢ (𝑘 = (𝑗 + 1) → ((𝜑 → (𝐹‘𝑘) ∈ ℝ) ↔ (𝜑 → (𝐹‘(𝑗 + 1)) ∈ ℝ))) |
34 | 7 | expcom 114 | . . . . . . . 8 ⊢ (𝑘 ∈ 𝑍 → (𝜑 → (𝐹‘𝑘) ∈ ℝ)) |
35 | 33, 34 | vtoclga 2675 | . . . . . . 7 ⊢ ((𝑗 + 1) ∈ 𝑍 → (𝜑 → (𝐹‘(𝑗 + 1)) ∈ ℝ)) |
36 | 35 | impcom 123 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 + 1) ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ∈ ℝ) |
37 | 23, 36 | sylan2 280 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ∈ ℝ) |
38 | 22, 37 | addge01d 7910 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (0 ≤ (𝐹‘(𝑗 + 1)) ↔ (seq𝑀( + , 𝐹, ℂ)‘𝑗) ≤ ((seq𝑀( + , 𝐹, ℂ)‘𝑗) + (𝐹‘(𝑗 + 1))))) |
39 | 31, 38 | mpbid 145 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹, ℂ)‘𝑗) ≤ ((seq𝑀( + , 𝐹, ℂ)‘𝑗) + (𝐹‘(𝑗 + 1)))) |
40 | simpr 108 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
41 | 40, 1 | syl6eleq 2175 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
42 | 14 | adantlr 461 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℝ) |
43 | 42 | recnd 7419 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
44 | 17 | adantl 271 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 + 𝑥) ∈ ℂ) |
45 | 41, 43, 44 | iseqp1 9757 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹, ℂ)‘(𝑗 + 1)) = ((seq𝑀( + , 𝐹, ℂ)‘𝑗) + (𝐹‘(𝑗 + 1)))) |
46 | 39, 45 | breqtrrd 3837 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹, ℂ)‘𝑗) ≤ (seq𝑀( + , 𝐹, ℂ)‘(𝑗 + 1))) |
47 | 1, 2, 3, 22, 46 | climub 10556 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹, ℂ)‘𝑁) ≤ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1285 ∈ wcel 1434 Vcvv 2612 ⊆ wss 2984 class class class wbr 3811 ⟶wf 4965 ‘cfv 4969 (class class class)co 5591 ℂcc 7251 ℝcr 7252 0cc0 7253 1c1 7254 + caddc 7256 ≤ cle 7426 ℤcz 8646 ℤ≥cuz 8914 seqcseq 9740 ⇝ cli 10491 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3919 ax-sep 3922 ax-nul 3930 ax-pow 3974 ax-pr 4000 ax-un 4224 ax-setind 4316 ax-iinf 4366 ax-cnex 7339 ax-resscn 7340 ax-1cn 7341 ax-1re 7342 ax-icn 7343 ax-addcl 7344 ax-addrcl 7345 ax-mulcl 7346 ax-mulrcl 7347 ax-addcom 7348 ax-mulcom 7349 ax-addass 7350 ax-mulass 7351 ax-distr 7352 ax-i2m1 7353 ax-0lt1 7354 ax-1rid 7355 ax-0id 7356 ax-rnegex 7357 ax-precex 7358 ax-cnre 7359 ax-pre-ltirr 7360 ax-pre-ltwlin 7361 ax-pre-lttrn 7362 ax-pre-apti 7363 ax-pre-ltadd 7364 ax-pre-mulgt0 7365 ax-pre-mulext 7366 ax-arch 7367 ax-caucvg 7368 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rmo 2361 df-rab 2362 df-v 2614 df-sbc 2827 df-csb 2920 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-nul 3270 df-if 3374 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-int 3663 df-iun 3706 df-br 3812 df-opab 3866 df-mpt 3867 df-tr 3902 df-id 4084 df-po 4087 df-iso 4088 df-iord 4157 df-on 4159 df-ilim 4160 df-suc 4162 df-iom 4369 df-xp 4407 df-rel 4408 df-cnv 4409 df-co 4410 df-dm 4411 df-rn 4412 df-res 4413 df-ima 4414 df-iota 4934 df-fun 4971 df-fn 4972 df-f 4973 df-f1 4974 df-fo 4975 df-f1o 4976 df-fv 4977 df-riota 5547 df-ov 5594 df-oprab 5595 df-mpt2 5596 df-1st 5846 df-2nd 5847 df-recs 6002 df-frec 6088 df-pnf 7427 df-mnf 7428 df-xr 7429 df-ltxr 7430 df-le 7431 df-sub 7558 df-neg 7559 df-reap 7952 df-ap 7959 df-div 8038 df-inn 8317 df-2 8375 df-3 8376 df-4 8377 df-n0 8566 df-z 8647 df-uz 8915 df-rp 9030 df-fz 9320 df-iseq 9741 df-iexp 9792 df-cj 10103 df-re 10104 df-im 10105 df-rsqrt 10258 df-abs 10259 df-clim 10492 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |