Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  climserile GIF version

Theorem climserile 10557
 Description: The partial sums of a converging infinite series with nonnegative terms are bounded by its limit. (Contributed by Jim Kingdon, 22-Aug-2021.)
Hypotheses
Ref Expression
clim2ser.1 𝑍 = (ℤ𝑀)
climserile.2 (𝜑𝑁𝑍)
climserile.3 (𝜑 → seq𝑀( + , 𝐹, ℂ) ⇝ 𝐴)
climserile.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
climserile.5 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
Assertion
Ref Expression
climserile (𝜑 → (seq𝑀( + , 𝐹, ℂ)‘𝑁) ≤ 𝐴)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘   𝑘,𝑍

Proof of Theorem climserile
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clim2ser.1 . 2 𝑍 = (ℤ𝑀)
2 climserile.2 . 2 (𝜑𝑁𝑍)
3 climserile.3 . 2 (𝜑 → seq𝑀( + , 𝐹, ℂ) ⇝ 𝐴)
42, 1syl6eleq 2175 . . . . . 6 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzel2 8919 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
64, 5syl 14 . . . . 5 (𝜑𝑀 ∈ ℤ)
7 climserile.4 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
81, 6, 7iserfre 9769 . . . 4 (𝜑 → seq𝑀( + , 𝐹, ℝ):𝑍⟶ℝ)
9 cnex 7369 . . . . . . 7 ℂ ∈ V
109a1i 9 . . . . . 6 (𝜑 → ℂ ∈ V)
11 ax-resscn 7340 . . . . . . 7 ℝ ⊆ ℂ
1211a1i 9 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
131eleq2i 2149 . . . . . . 7 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
1413, 7sylan2br 282 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)
15 readdcl 7371 . . . . . . 7 ((𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑘 + 𝑥) ∈ ℝ)
1615adantl 271 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ)) → (𝑘 + 𝑥) ∈ ℝ)
17 addcl 7370 . . . . . . 7 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 + 𝑥) ∈ ℂ)
1817adantl 271 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 + 𝑥) ∈ ℂ)
196, 10, 12, 14, 16, 18iseqss 9760 . . . . 5 (𝜑 → seq𝑀( + , 𝐹, ℝ) = seq𝑀( + , 𝐹, ℂ))
2019feq1d 5102 . . . 4 (𝜑 → (seq𝑀( + , 𝐹, ℝ):𝑍⟶ℝ ↔ seq𝑀( + , 𝐹, ℂ):𝑍⟶ℝ))
218, 20mpbid 145 . . 3 (𝜑 → seq𝑀( + , 𝐹, ℂ):𝑍⟶ℝ)
2221ffvelrnda 5379 . 2 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹, ℂ)‘𝑗) ∈ ℝ)
231peano2uzs 8967 . . . . 5 (𝑗𝑍 → (𝑗 + 1) ∈ 𝑍)
24 fveq2 5253 . . . . . . . . 9 (𝑘 = (𝑗 + 1) → (𝐹𝑘) = (𝐹‘(𝑗 + 1)))
2524breq2d 3823 . . . . . . . 8 (𝑘 = (𝑗 + 1) → (0 ≤ (𝐹𝑘) ↔ 0 ≤ (𝐹‘(𝑗 + 1))))
2625imbi2d 228 . . . . . . 7 (𝑘 = (𝑗 + 1) → ((𝜑 → 0 ≤ (𝐹𝑘)) ↔ (𝜑 → 0 ≤ (𝐹‘(𝑗 + 1)))))
27 climserile.5 . . . . . . . 8 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
2827expcom 114 . . . . . . 7 (𝑘𝑍 → (𝜑 → 0 ≤ (𝐹𝑘)))
2926, 28vtoclga 2675 . . . . . 6 ((𝑗 + 1) ∈ 𝑍 → (𝜑 → 0 ≤ (𝐹‘(𝑗 + 1))))
3029impcom 123 . . . . 5 ((𝜑 ∧ (𝑗 + 1) ∈ 𝑍) → 0 ≤ (𝐹‘(𝑗 + 1)))
3123, 30sylan2 280 . . . 4 ((𝜑𝑗𝑍) → 0 ≤ (𝐹‘(𝑗 + 1)))
3224eleq1d 2151 . . . . . . . . 9 (𝑘 = (𝑗 + 1) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(𝑗 + 1)) ∈ ℝ))
3332imbi2d 228 . . . . . . . 8 (𝑘 = (𝑗 + 1) → ((𝜑 → (𝐹𝑘) ∈ ℝ) ↔ (𝜑 → (𝐹‘(𝑗 + 1)) ∈ ℝ)))
347expcom 114 . . . . . . . 8 (𝑘𝑍 → (𝜑 → (𝐹𝑘) ∈ ℝ))
3533, 34vtoclga 2675 . . . . . . 7 ((𝑗 + 1) ∈ 𝑍 → (𝜑 → (𝐹‘(𝑗 + 1)) ∈ ℝ))
3635impcom 123 . . . . . 6 ((𝜑 ∧ (𝑗 + 1) ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ∈ ℝ)
3723, 36sylan2 280 . . . . 5 ((𝜑𝑗𝑍) → (𝐹‘(𝑗 + 1)) ∈ ℝ)
3822, 37addge01d 7910 . . . 4 ((𝜑𝑗𝑍) → (0 ≤ (𝐹‘(𝑗 + 1)) ↔ (seq𝑀( + , 𝐹, ℂ)‘𝑗) ≤ ((seq𝑀( + , 𝐹, ℂ)‘𝑗) + (𝐹‘(𝑗 + 1)))))
3931, 38mpbid 145 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹, ℂ)‘𝑗) ≤ ((seq𝑀( + , 𝐹, ℂ)‘𝑗) + (𝐹‘(𝑗 + 1))))
40 simpr 108 . . . . 5 ((𝜑𝑗𝑍) → 𝑗𝑍)
4140, 1syl6eleq 2175 . . . 4 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
4214adantlr 461 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)
4342recnd 7419 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
4417adantl 271 . . . 4 (((𝜑𝑗𝑍) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 + 𝑥) ∈ ℂ)
4541, 43, 44iseqp1 9757 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹, ℂ)‘(𝑗 + 1)) = ((seq𝑀( + , 𝐹, ℂ)‘𝑗) + (𝐹‘(𝑗 + 1))))
4639, 45breqtrrd 3837 . 2 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹, ℂ)‘𝑗) ≤ (seq𝑀( + , 𝐹, ℂ)‘(𝑗 + 1)))
471, 2, 3, 22, 46climub 10556 1 (𝜑 → (seq𝑀( + , 𝐹, ℂ)‘𝑁) ≤ 𝐴)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   = wceq 1285   ∈ wcel 1434  Vcvv 2612   ⊆ wss 2984   class class class wbr 3811  ⟶wf 4965  ‘cfv 4969  (class class class)co 5591  ℂcc 7251  ℝcr 7252  0cc0 7253  1c1 7254   + caddc 7256   ≤ cle 7426  ℤcz 8646  ℤ≥cuz 8914  seqcseq 9740   ⇝ cli 10491 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366  ax-cnex 7339  ax-resscn 7340  ax-1cn 7341  ax-1re 7342  ax-icn 7343  ax-addcl 7344  ax-addrcl 7345  ax-mulcl 7346  ax-mulrcl 7347  ax-addcom 7348  ax-mulcom 7349  ax-addass 7350  ax-mulass 7351  ax-distr 7352  ax-i2m1 7353  ax-0lt1 7354  ax-1rid 7355  ax-0id 7356  ax-rnegex 7357  ax-precex 7358  ax-cnre 7359  ax-pre-ltirr 7360  ax-pre-ltwlin 7361  ax-pre-lttrn 7362  ax-pre-apti 7363  ax-pre-ltadd 7364  ax-pre-mulgt0 7365  ax-pre-mulext 7366  ax-arch 7367  ax-caucvg 7368 This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-if 3374  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4084  df-po 4087  df-iso 4088  df-iord 4157  df-on 4159  df-ilim 4160  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-riota 5547  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-recs 6002  df-frec 6088  df-pnf 7427  df-mnf 7428  df-xr 7429  df-ltxr 7430  df-le 7431  df-sub 7558  df-neg 7559  df-reap 7952  df-ap 7959  df-div 8038  df-inn 8317  df-2 8375  df-3 8376  df-4 8377  df-n0 8566  df-z 8647  df-uz 8915  df-rp 9030  df-fz 9320  df-iseq 9741  df-iexp 9792  df-cj 10103  df-re 10104  df-im 10105  df-rsqrt 10258  df-abs 10259  df-clim 10492 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator