Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  dcdc GIF version

Theorem dcdc 12550
Description: Decidability of a proposition is decidable if and only if that proposition is decidable. DECID is idempotent. (Contributed by BJ, 9-Oct-2019.)
Assertion
Ref Expression
dcdc (DECID DECID 𝜑DECID 𝜑)

Proof of Theorem dcdc
StepHypRef Expression
1 df-dc 787 . 2 (DECID DECID 𝜑 ↔ (DECID 𝜑 ∨ ¬ DECID 𝜑))
2 nndc 12549 . . 3 ¬ ¬ DECID 𝜑
32biorfi 706 . 2 (DECID 𝜑 ↔ (DECID 𝜑 ∨ ¬ DECID 𝜑))
41, 3bitr4i 186 1 (DECID DECID 𝜑DECID 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 104  wo 670  DECID wdc 786
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671
This theorem depends on definitions:  df-bi 116  df-dc 787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator