Detailed syntax breakdown of Definition df-isum
Step | Hyp | Ref
| Expression |
1 | | cA |
. . 3
class 𝐴 |
2 | | cB |
. . 3
class 𝐵 |
3 | | vk |
. . 3
setvar 𝑘 |
4 | 1, 2, 3 | csu 10563 |
. 2
class
Σ𝑘 ∈
𝐴 𝐵 |
5 | | vm |
. . . . . . . . 9
setvar 𝑚 |
6 | 5 | cv 1284 |
. . . . . . . 8
class 𝑚 |
7 | | cuz 8913 |
. . . . . . . 8
class
ℤ≥ |
8 | 6, 7 | cfv 4968 |
. . . . . . 7
class
(ℤ≥‘𝑚) |
9 | 1, 8 | wss 2984 |
. . . . . 6
wff 𝐴 ⊆
(ℤ≥‘𝑚) |
10 | | vj |
. . . . . . . . . 10
setvar 𝑗 |
11 | 10 | cv 1284 |
. . . . . . . . 9
class 𝑗 |
12 | 11, 1 | wcel 1434 |
. . . . . . . 8
wff 𝑗 ∈ 𝐴 |
13 | 12 | wdc 776 |
. . . . . . 7
wff
DECID 𝑗 ∈ 𝐴 |
14 | 13, 10, 8 | wral 2353 |
. . . . . 6
wff
∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 |
15 | | caddc 7255 |
. . . . . . . 8
class
+ |
16 | | cc 7250 |
. . . . . . . 8
class
ℂ |
17 | | vn |
. . . . . . . . 9
setvar 𝑛 |
18 | | cz 8645 |
. . . . . . . . 9
class
ℤ |
19 | 17 | cv 1284 |
. . . . . . . . . . 11
class 𝑛 |
20 | 19, 1 | wcel 1434 |
. . . . . . . . . 10
wff 𝑛 ∈ 𝐴 |
21 | 3, 19, 2 | csb 2919 |
. . . . . . . . . 10
class
⦋𝑛 /
𝑘⦌𝐵 |
22 | | cc0 7252 |
. . . . . . . . . 10
class
0 |
23 | 20, 21, 22 | cif 3373 |
. . . . . . . . 9
class if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0) |
24 | 17, 18, 23 | cmpt 3865 |
. . . . . . . 8
class (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)) |
25 | 15, 16, 24, 6 | cseq 9739 |
. . . . . . 7
class seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)), ℂ) |
26 | | vx |
. . . . . . . 8
setvar 𝑥 |
27 | 26 | cv 1284 |
. . . . . . 7
class 𝑥 |
28 | | cli 10490 |
. . . . . . 7
class
⇝ |
29 | 25, 27, 28 | wbr 3811 |
. . . . . 6
wff seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)), ℂ) ⇝ 𝑥 |
30 | 9, 14, 29 | w3a 920 |
. . . . 5
wff (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)), ℂ) ⇝ 𝑥) |
31 | 30, 5, 18 | wrex 2354 |
. . . 4
wff
∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)), ℂ) ⇝ 𝑥) |
32 | | c1 7253 |
. . . . . . . . 9
class
1 |
33 | | cfz 9318 |
. . . . . . . . 9
class
... |
34 | 32, 6, 33 | co 5590 |
. . . . . . . 8
class
(1...𝑚) |
35 | | vf |
. . . . . . . . 9
setvar 𝑓 |
36 | 35 | cv 1284 |
. . . . . . . 8
class 𝑓 |
37 | 34, 1, 36 | wf1o 4967 |
. . . . . . 7
wff 𝑓:(1...𝑚)–1-1-onto→𝐴 |
38 | | cn 8315 |
. . . . . . . . . . 11
class
ℕ |
39 | | cle 7425 |
. . . . . . . . . . . . 13
class
≤ |
40 | 19, 6, 39 | wbr 3811 |
. . . . . . . . . . . 12
wff 𝑛 ≤ 𝑚 |
41 | 19, 36 | cfv 4968 |
. . . . . . . . . . . . 13
class (𝑓‘𝑛) |
42 | 3, 41, 2 | csb 2919 |
. . . . . . . . . . . 12
class
⦋(𝑓‘𝑛) / 𝑘⦌𝐵 |
43 | 40, 42, 22 | cif 3373 |
. . . . . . . . . . 11
class if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0) |
44 | 17, 38, 43 | cmpt 3865 |
. . . . . . . . . 10
class (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) |
45 | 15, 16, 44, 32 | cseq 9739 |
. . . . . . . . 9
class seq1( + ,
(𝑛 ∈ ℕ ↦
if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)), ℂ) |
46 | 6, 45 | cfv 4968 |
. . . . . . . 8
class (seq1( +
, (𝑛 ∈ ℕ ↦
if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)), ℂ)‘𝑚) |
47 | 27, 46 | wceq 1285 |
. . . . . . 7
wff 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)), ℂ)‘𝑚) |
48 | 37, 47 | wa 102 |
. . . . . 6
wff (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)), ℂ)‘𝑚)) |
49 | 48, 35 | wex 1422 |
. . . . 5
wff
∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)), ℂ)‘𝑚)) |
50 | 49, 5, 38 | wrex 2354 |
. . . 4
wff
∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)), ℂ)‘𝑚)) |
51 | 31, 50 | wo 662 |
. . 3
wff
(∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)), ℂ) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)), ℂ)‘𝑚))) |
52 | 51, 26 | cio 4931 |
. 2
class
(℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)), ℂ) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)), ℂ)‘𝑚)))) |
53 | 4, 52 | wceq 1285 |
1
wff
Σ𝑘 ∈
𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0)), ℂ) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)), ℂ)‘𝑚)))) |