![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmxpinm | GIF version |
Description: The domain of the intersection of two square cross products. Unlike dmin 4657, equality holds. (Contributed by NM, 29-Jan-2008.) |
Ref | Expression |
---|---|
dmxpinm | ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∩ 𝐵) → dom ((𝐴 × 𝐴) ∩ (𝐵 × 𝐵)) = (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inxp 4583 | . . . 4 ⊢ ((𝐴 × 𝐴) ∩ (𝐵 × 𝐵)) = ((𝐴 ∩ 𝐵) × (𝐴 ∩ 𝐵)) | |
2 | 1 | dmeqi 4650 | . . 3 ⊢ dom ((𝐴 × 𝐴) ∩ (𝐵 × 𝐵)) = dom ((𝐴 ∩ 𝐵) × (𝐴 ∩ 𝐵)) |
3 | 2 | a1i 9 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∩ 𝐵) → dom ((𝐴 × 𝐴) ∩ (𝐵 × 𝐵)) = dom ((𝐴 ∩ 𝐵) × (𝐴 ∩ 𝐵))) |
4 | dmxpm 4669 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∩ 𝐵) → dom ((𝐴 ∩ 𝐵) × (𝐴 ∩ 𝐵)) = (𝐴 ∩ 𝐵)) | |
5 | 3, 4 | eqtrd 2121 | 1 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∩ 𝐵) → dom ((𝐴 × 𝐴) ∩ (𝐵 × 𝐵)) = (𝐴 ∩ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1290 ∃wex 1427 ∈ wcel 1439 ∩ cin 2999 × cxp 4450 dom cdm 4452 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-v 2622 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-br 3852 df-opab 3906 df-xp 4458 df-rel 4459 df-dm 4462 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |