ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elmpt2cl GIF version

Theorem elmpt2cl 5880
Description: If a two-parameter class is not empty, constrain the implicit pair. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Hypothesis
Ref Expression
elmpt2cl.f 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
elmpt2cl (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆𝐴𝑇𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem elmpt2cl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elmpt2cl.f . . . . . 6 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
2 df-mpt2 5695 . . . . . 6 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
31, 2eqtri 2115 . . . . 5 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
43dmeqi 4668 . . . 4 dom 𝐹 = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
5 dmoprabss 5768 . . . 4 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)} ⊆ (𝐴 × 𝐵)
64, 5eqsstri 3071 . . 3 dom 𝐹 ⊆ (𝐴 × 𝐵)
71mpt2fun 5785 . . . . . 6 Fun 𝐹
8 funrel 5066 . . . . . 6 (Fun 𝐹 → Rel 𝐹)
97, 8ax-mp 7 . . . . 5 Rel 𝐹
10 relelfvdm 5371 . . . . 5 ((Rel 𝐹𝑋 ∈ (𝐹‘⟨𝑆, 𝑇⟩)) → ⟨𝑆, 𝑇⟩ ∈ dom 𝐹)
119, 10mpan 416 . . . 4 (𝑋 ∈ (𝐹‘⟨𝑆, 𝑇⟩) → ⟨𝑆, 𝑇⟩ ∈ dom 𝐹)
12 df-ov 5693 . . . 4 (𝑆𝐹𝑇) = (𝐹‘⟨𝑆, 𝑇⟩)
1311, 12eleq2s 2189 . . 3 (𝑋 ∈ (𝑆𝐹𝑇) → ⟨𝑆, 𝑇⟩ ∈ dom 𝐹)
146, 13sseldi 3037 . 2 (𝑋 ∈ (𝑆𝐹𝑇) → ⟨𝑆, 𝑇⟩ ∈ (𝐴 × 𝐵))
15 opelxp 4497 . 2 (⟨𝑆, 𝑇⟩ ∈ (𝐴 × 𝐵) ↔ (𝑆𝐴𝑇𝐵))
1614, 15sylib 121 1 (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆𝐴𝑇𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1296  wcel 1445  cop 3469   × cxp 4465  dom cdm 4467  Rel wrel 4472  Fun wfun 5043  cfv 5049  (class class class)co 5690  {coprab 5691  cmpt2 5692
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-iota 5014  df-fun 5051  df-fv 5057  df-ov 5693  df-oprab 5694  df-mpt2 5695
This theorem is referenced by:  elmpt2cl1  5881  elmpt2cl2  5882  elovmpt2  5883  elpmi  6464  elmapex  6466  pmsspw  6480  ixxssxr  9466  elixx3g  9467  ixxssixx  9468  eliooxr  9493  elfz2  9580  restsspw  11814  restrcl  12019  ssrest  12034  iscn2  12051
  Copyright terms: Public domain W3C validator