![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elmpt2cl | GIF version |
Description: If a two-parameter class is not empty, constrain the implicit pair. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
elmpt2cl.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
elmpt2cl | ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmpt2cl.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | df-mpt2 5695 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
3 | 1, 2 | eqtri 2115 | . . . . 5 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
4 | 3 | dmeqi 4668 | . . . 4 ⊢ dom 𝐹 = dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
5 | dmoprabss 5768 | . . . 4 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} ⊆ (𝐴 × 𝐵) | |
6 | 4, 5 | eqsstri 3071 | . . 3 ⊢ dom 𝐹 ⊆ (𝐴 × 𝐵) |
7 | 1 | mpt2fun 5785 | . . . . . 6 ⊢ Fun 𝐹 |
8 | funrel 5066 | . . . . . 6 ⊢ (Fun 𝐹 → Rel 𝐹) | |
9 | 7, 8 | ax-mp 7 | . . . . 5 ⊢ Rel 𝐹 |
10 | relelfvdm 5371 | . . . . 5 ⊢ ((Rel 𝐹 ∧ 𝑋 ∈ (𝐹‘〈𝑆, 𝑇〉)) → 〈𝑆, 𝑇〉 ∈ dom 𝐹) | |
11 | 9, 10 | mpan 416 | . . . 4 ⊢ (𝑋 ∈ (𝐹‘〈𝑆, 𝑇〉) → 〈𝑆, 𝑇〉 ∈ dom 𝐹) |
12 | df-ov 5693 | . . . 4 ⊢ (𝑆𝐹𝑇) = (𝐹‘〈𝑆, 𝑇〉) | |
13 | 11, 12 | eleq2s 2189 | . . 3 ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → 〈𝑆, 𝑇〉 ∈ dom 𝐹) |
14 | 6, 13 | sseldi 3037 | . 2 ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → 〈𝑆, 𝑇〉 ∈ (𝐴 × 𝐵)) |
15 | opelxp 4497 | . 2 ⊢ (〈𝑆, 𝑇〉 ∈ (𝐴 × 𝐵) ↔ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐵)) | |
16 | 14, 15 | sylib 121 | 1 ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1296 ∈ wcel 1445 〈cop 3469 × cxp 4465 dom cdm 4467 Rel wrel 4472 Fun wfun 5043 ‘cfv 5049 (class class class)co 5690 {coprab 5691 ↦ cmpt2 5692 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-v 2635 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-opab 3922 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-iota 5014 df-fun 5051 df-fv 5057 df-ov 5693 df-oprab 5694 df-mpt2 5695 |
This theorem is referenced by: elmpt2cl1 5881 elmpt2cl2 5882 elovmpt2 5883 elpmi 6464 elmapex 6466 pmsspw 6480 ixxssxr 9466 elixx3g 9467 ixxssixx 9468 eliooxr 9493 elfz2 9580 restsspw 11814 restrcl 12019 ssrest 12034 iscn2 12051 |
Copyright terms: Public domain | W3C validator |