Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstr3d GIF version

Theorem eqsstr3d 3084
 Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
eqsstr3d.1 (𝜑𝐵 = 𝐴)
eqsstr3d.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
eqsstr3d (𝜑𝐴𝐶)

Proof of Theorem eqsstr3d
StepHypRef Expression
1 eqsstr3d.1 . . 3 (𝜑𝐵 = 𝐴)
21eqcomd 2105 . 2 (𝜑𝐴 = 𝐵)
3 eqsstr3d.2 . 2 (𝜑𝐵𝐶)
42, 3eqsstrd 3083 1 (𝜑𝐴𝐶)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1299   ⊆ wss 3021 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-11 1452  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082 This theorem depends on definitions:  df-bi 116  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-in 3027  df-ss 3034 This theorem is referenced by:  ssxpbm  4910  ssxp1  4911  ssxp2  4912  suppssof1  5930  tfrlemiubacc  6157  tfr1onlemubacc  6173  tfrcllemubacc  6186  oaword1  6297  phplem4dom  6685  fisseneq  6749  archnqq  7126  epttop  12041  metequiv2  12424  limccnpcntop  12520  nnsf  12783
 Copyright terms: Public domain W3C validator