ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstr3i GIF version

Theorem eqsstr3i 3046
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 19-Oct-1999.)
Hypotheses
Ref Expression
eqsstr3.1 𝐵 = 𝐴
eqsstr3.2 𝐵𝐶
Assertion
Ref Expression
eqsstr3i 𝐴𝐶

Proof of Theorem eqsstr3i
StepHypRef Expression
1 eqsstr3.1 . . 3 𝐵 = 𝐴
21eqcomi 2089 . 2 𝐴 = 𝐵
3 eqsstr3.2 . 2 𝐵𝐶
42, 3eqsstri 3045 1 𝐴𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1287  wss 2988
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-11 1440  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067
This theorem depends on definitions:  df-bi 115  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-in 2994  df-ss 3001
This theorem is referenced by:  inss2  3210  dmv  4622  resasplitss  5155  ofrfval  5823  fnofval  5824  ofrval  5825  off  5827  ofres  5828  ofco  5832  dftpos4  5984  smores2  6015  caseinj  6727  djuinj  6733  bcm1k  10086  bcpasc  10092
  Copyright terms: Public domain W3C validator