ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expinnval GIF version

Theorem expinnval 9793
Description: Value of exponentiation to positive integer powers. (Contributed by Jim Kingdon, 8-Jun-2020.)
Assertion
Ref Expression
expinnval ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁))

Proof of Theorem expinnval
StepHypRef Expression
1 simpl 107 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℂ)
2 nnz 8663 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
32adantl 271 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
4 simpr 108 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
54nnnn0d 8616 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
65nn0ge0d 8619 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 0 ≤ 𝑁)
76olcd 686 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 # 0 ∨ 0 ≤ 𝑁))
8 expival 9792 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → (𝐴𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)))))
91, 3, 7, 8syl3anc 1170 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)))))
10 nnne0 8342 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
1110neneqd 2270 . . . . 5 (𝑁 ∈ ℕ → ¬ 𝑁 = 0)
1211iffalsed 3383 . . . 4 (𝑁 ∈ ℕ → if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)))) = if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))))
13 nngt0 8339 . . . . 5 (𝑁 ∈ ℕ → 0 < 𝑁)
1413iftrued 3380 . . . 4 (𝑁 ∈ ℕ → if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) = (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁))
1512, 14eqtrd 2115 . . 3 (𝑁 ∈ ℕ → if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)))) = (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁))
1615adantl 271 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)))) = (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁))
179, 16eqtrd 2115 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wo 662   = wceq 1285  wcel 1434  ifcif 3373  {csn 3422   class class class wbr 3811   × cxp 4397  cfv 4967  (class class class)co 5589  cc 7249  0cc0 7251  1c1 7252   · cmul 7256   < clt 7423  cle 7424  -cneg 7555   # cap 7956   / cdiv 8035  cn 8314  cz 8644  seqcseq 9738  cexp 9789
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-iinf 4365  ax-cnex 7337  ax-resscn 7338  ax-1cn 7339  ax-1re 7340  ax-icn 7341  ax-addcl 7342  ax-addrcl 7343  ax-mulcl 7344  ax-mulrcl 7345  ax-addcom 7346  ax-mulcom 7347  ax-addass 7348  ax-mulass 7349  ax-distr 7350  ax-i2m1 7351  ax-0lt1 7352  ax-1rid 7353  ax-0id 7354  ax-rnegex 7355  ax-precex 7356  ax-cnre 7357  ax-pre-ltirr 7358  ax-pre-ltwlin 7359  ax-pre-lttrn 7360  ax-pre-apti 7361  ax-pre-ltadd 7362  ax-pre-mulgt0 7363  ax-pre-mulext 7364
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-if 3374  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4083  df-po 4086  df-iso 4087  df-iord 4156  df-on 4158  df-ilim 4159  df-suc 4161  df-iom 4368  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-dm 4409  df-rn 4410  df-res 4411  df-ima 4412  df-iota 4932  df-fun 4969  df-fn 4970  df-f 4971  df-f1 4972  df-fo 4973  df-f1o 4974  df-fv 4975  df-riota 5545  df-ov 5592  df-oprab 5593  df-mpt2 5594  df-1st 5844  df-2nd 5845  df-recs 6000  df-frec 6086  df-pnf 7425  df-mnf 7426  df-xr 7427  df-ltxr 7428  df-le 7429  df-sub 7556  df-neg 7557  df-reap 7950  df-ap 7957  df-div 8036  df-inn 8315  df-n0 8564  df-z 8645  df-uz 8913  df-iseq 9739  df-iexp 9790
This theorem is referenced by:  exp1  9796  expp1  9797  expnegap0  9798
  Copyright terms: Public domain W3C validator