Step | Hyp | Ref
| Expression |
1 | | iftrue 3381 |
. . . . 5
⊢ (𝑁 = 0 → if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁)))) =
1) |
2 | | ax-1cn 7359 |
. . . . 5
⊢ 1 ∈
ℂ |
3 | 1, 2 | syl6eqel 2175 |
. . . 4
⊢ (𝑁 = 0 → if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁))))
∈ ℂ) |
4 | 3 | a1i 9 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → (𝑁 = 0 → if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁))))
∈ ℂ)) |
5 | | elnnz 8670 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 <
𝑁)) |
6 | | elnnuz 8964 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈
(ℤ≥‘1)) |
7 | 5, 6 | sylbb1 135 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 0 <
𝑁) → 𝑁 ∈
(ℤ≥‘1)) |
8 | 7 | adantll 460 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) ∧ 0 <
𝑁) → 𝑁 ∈
(ℤ≥‘1)) |
9 | | simpl 107 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈
(ℤ≥‘1)) → 𝐴 ∈ ℂ) |
10 | | elnnuz 8964 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ ℕ ↔ 𝑧 ∈
(ℤ≥‘1)) |
11 | | fvconst2g 5454 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℕ) →
((ℕ × {𝐴})‘𝑧) = 𝐴) |
12 | 10, 11 | sylan2br 282 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈
(ℤ≥‘1)) → ((ℕ × {𝐴})‘𝑧) = 𝐴) |
13 | 12 | eleq1d 2153 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈
(ℤ≥‘1)) → (((ℕ × {𝐴})‘𝑧) ∈ ℂ ↔ 𝐴 ∈ ℂ)) |
14 | 9, 13 | mpbird 165 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈
(ℤ≥‘1)) → ((ℕ × {𝐴})‘𝑧) ∈ ℂ) |
15 | 14 | adantlr 461 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈
(ℤ≥‘1)) → ((ℕ × {𝐴})‘𝑧) ∈ ℂ) |
16 | 15 | adantlr 461 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) ∧ 0 <
𝑁) ∧ 𝑧 ∈ (ℤ≥‘1))
→ ((ℕ × {𝐴})‘𝑧) ∈ ℂ) |
17 | | mulcl 7390 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 · 𝑤) ∈ ℂ) |
18 | 17 | adantl 271 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) ∧ 0 <
𝑁) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 · 𝑤) ∈ ℂ) |
19 | 8, 16, 18 | iseqcl 9770 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) ∧ 0 <
𝑁) → (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘𝑁) ∈
ℂ) |
20 | | iftrue 3381 |
. . . . . . . . . . . 12
⊢ (0 <
𝑁 → if(0 < 𝑁, (seq1( · , (ℕ
× {𝐴}),
ℂ)‘𝑁), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) = (seq1( · , (ℕ ×
{𝐴}), ℂ)‘𝑁)) |
21 | 20 | eleq1d 2153 |
. . . . . . . . . . 11
⊢ (0 <
𝑁 → (if(0 < 𝑁, (seq1( · , (ℕ
× {𝐴}),
ℂ)‘𝑁), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) ∈ ℂ ↔ (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘𝑁) ∈
ℂ)) |
22 | 21 | adantl 271 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) ∧ 0 <
𝑁) → (if(0 < 𝑁, (seq1( · , (ℕ
× {𝐴}),
ℂ)‘𝑁), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) ∈ ℂ ↔ (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘𝑁) ∈
ℂ)) |
23 | 19, 22 | mpbird 165 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) ∧ 0 <
𝑁) → if(0 < 𝑁, (seq1( · , (ℕ
× {𝐴}),
ℂ)‘𝑁), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) ∈ ℂ) |
24 | 23 | ex 113 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (0 <
𝑁 → if(0 < 𝑁, (seq1( · , (ℕ
× {𝐴}),
ℂ)‘𝑁), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) ∈ ℂ)) |
25 | 24 | adantr 270 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) ∧ ¬
𝑁 = 0) → (0 < 𝑁 → if(0 < 𝑁, (seq1( · , (ℕ
× {𝐴}),
ℂ)‘𝑁), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) ∈ ℂ)) |
26 | 25 | 3adantl3 1099 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) → (0 < 𝑁 → if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁))) ∈
ℂ)) |
27 | | simpll2 981 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝑁 ∈ ℤ) |
28 | 27 | znegcld 8780 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → -𝑁 ∈ ℤ) |
29 | 27 | zred 8778 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝑁 ∈ ℝ) |
30 | | 0red 7410 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 0 ∈ ℝ) |
31 | | simpr 108 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ¬ 0 < 𝑁) |
32 | 29, 30, 31 | nltled 7525 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝑁 ≤ 0) |
33 | | simplr 497 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ¬ 𝑁 = 0) |
34 | 33 | neneqad 2330 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝑁 ≠ 0) |
35 | 34 | necomd 2337 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 0 ≠ 𝑁) |
36 | | 0z 8671 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
ℤ |
37 | | zltlen 8735 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℤ ∧ 0 ∈
ℤ) → (𝑁 < 0
↔ (𝑁 ≤ 0 ∧ 0
≠ 𝑁))) |
38 | 36, 37 | mpan2 416 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℤ → (𝑁 < 0 ↔ (𝑁 ≤ 0 ∧ 0 ≠ 𝑁))) |
39 | 38 | 3ad2ant2 963 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → (𝑁 < 0 ↔ (𝑁 ≤ 0 ∧ 0 ≠ 𝑁))) |
40 | 39 | ad2antrr 472 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝑁 < 0 ↔ (𝑁 ≤ 0 ∧ 0 ≠ 𝑁))) |
41 | 32, 35, 40 | mpbir2and 888 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝑁 < 0) |
42 | 29 | lt0neg1d 7911 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝑁 < 0 ↔ 0 < -𝑁)) |
43 | 41, 42 | mpbid 145 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 0 < -𝑁) |
44 | | elnnz 8670 |
. . . . . . . . . . . 12
⊢ (-𝑁 ∈ ℕ ↔ (-𝑁 ∈ ℤ ∧ 0 <
-𝑁)) |
45 | 28, 43, 44 | sylanbrc 408 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → -𝑁 ∈ ℕ) |
46 | | elnnuz 8964 |
. . . . . . . . . . 11
⊢ (-𝑁 ∈ ℕ ↔ -𝑁 ∈
(ℤ≥‘1)) |
47 | 45, 46 | sylib 120 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → -𝑁 ∈
(ℤ≥‘1)) |
48 | 14 | 3ad2antl1 1103 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ 𝑧 ∈ (ℤ≥‘1))
→ ((ℕ × {𝐴})‘𝑧) ∈ ℂ) |
49 | 48 | adantlr 461 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ 𝑧 ∈ (ℤ≥‘1))
→ ((ℕ × {𝐴})‘𝑧) ∈ ℂ) |
50 | 49 | adantlr 461 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℂ ∧ 𝑁 ∈
ℤ ∧ (𝐴 # 0 ∨ 0
≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) ∧ 𝑧 ∈ (ℤ≥‘1))
→ ((ℕ × {𝐴})‘𝑧) ∈ ℂ) |
51 | 17 | adantl 271 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℂ ∧ 𝑁 ∈
ℤ ∧ (𝐴 # 0 ∨ 0
≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 · 𝑤) ∈ ℂ) |
52 | 47, 50, 51 | iseqcl 9770 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (seq1( · , (ℕ ×
{𝐴}), ℂ)‘-𝑁) ∈
ℂ) |
53 | | simpll1 980 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝐴 ∈ ℂ) |
54 | | expivallem 9807 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ -𝑁 ∈ ℕ) → (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁) #
0) |
55 | 54 | 3com23 1147 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ -𝑁 ∈ ℕ ∧ 𝐴 # 0) → (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁) #
0) |
56 | 55 | 3expia 1143 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ -𝑁 ∈ ℕ) → (𝐴 # 0 → (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁) #
0)) |
57 | 53, 45, 56 | syl2anc 403 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝐴 # 0 → (seq1( · , (ℕ
× {𝐴}),
ℂ)‘-𝑁) #
0)) |
58 | 35 | neneqd 2272 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ¬ 0 = 𝑁) |
59 | | ioran 702 |
. . . . . . . . . . . . 13
⊢ (¬ (0
< 𝑁 ∨ 0 = 𝑁) ↔ (¬ 0 < 𝑁 ∧ ¬ 0 = 𝑁)) |
60 | 31, 58, 59 | sylanbrc 408 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ¬ (0 < 𝑁 ∨ 0 = 𝑁)) |
61 | | zleloe 8707 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ ℤ ∧ 𝑁
∈ ℤ) → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) |
62 | 36, 61 | mpan 415 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℤ → (0 ≤
𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) |
63 | 62 | 3ad2ant2 963 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) |
64 | 63 | ad2antrr 472 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) |
65 | 60, 64 | mtbird 631 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ¬ 0 ≤ 𝑁) |
66 | 65 | pm2.21d 582 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (0 ≤ 𝑁 → (seq1( · , (ℕ ×
{𝐴}), ℂ)‘-𝑁) # 0)) |
67 | | simpll3 982 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝐴 # 0 ∨ 0 ≤ 𝑁)) |
68 | 57, 66, 67 | mpjaod 671 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (seq1( · , (ℕ ×
{𝐴}), ℂ)‘-𝑁) # 0) |
69 | 52, 68 | recclapd 8164 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (1 / (seq1( · , (ℕ
× {𝐴}),
ℂ)‘-𝑁)) ∈
ℂ) |
70 | | iffalse 3384 |
. . . . . . . . . 10
⊢ (¬ 0
< 𝑁 → if(0 <
𝑁, (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘𝑁), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) = (1 / (seq1( · , (ℕ
× {𝐴}),
ℂ)‘-𝑁))) |
71 | 70 | eleq1d 2153 |
. . . . . . . . 9
⊢ (¬ 0
< 𝑁 → (if(0 <
𝑁, (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘𝑁), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) ∈ ℂ ↔ (1 / (seq1(
· , (ℕ × {𝐴}), ℂ)‘-𝑁)) ∈ ℂ)) |
72 | 71 | adantl 271 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁))) ∈
ℂ ↔ (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)) ∈ ℂ)) |
73 | 69, 72 | mpbird 165 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁))) ∈
ℂ) |
74 | 73 | ex 113 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) → (¬ 0 < 𝑁 → if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁))) ∈
ℂ)) |
75 | | zdclt 8734 |
. . . . . . . . . . 11
⊢ ((0
∈ ℤ ∧ 𝑁
∈ ℤ) → DECID 0 < 𝑁) |
76 | 36, 75 | mpan 415 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ →
DECID 0 < 𝑁) |
77 | | df-dc 779 |
. . . . . . . . . 10
⊢
(DECID 0 < 𝑁 ↔ (0 < 𝑁 ∨ ¬ 0 < 𝑁)) |
78 | 76, 77 | sylib 120 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → (0 <
𝑁 ∨ ¬ 0 < 𝑁)) |
79 | 78 | adantl 271 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (0 <
𝑁 ∨ ¬ 0 < 𝑁)) |
80 | 79 | adantr 270 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) ∧ ¬
𝑁 = 0) → (0 < 𝑁 ∨ ¬ 0 < 𝑁)) |
81 | 80 | 3adantl3 1099 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) → (0 < 𝑁 ∨ ¬ 0 < 𝑁)) |
82 | 26, 74, 81 | mpjaod 671 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) → if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁))) ∈
ℂ) |
83 | | iffalse 3384 |
. . . . . . 7
⊢ (¬
𝑁 = 0 → if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ
× {𝐴}),
ℂ)‘𝑁), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)))) = if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁)))) |
84 | 83 | eleq1d 2153 |
. . . . . 6
⊢ (¬
𝑁 = 0 → (if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ
× {𝐴}),
ℂ)‘𝑁), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)))) ∈ ℂ ↔ if(0 < 𝑁, (seq1( · , (ℕ
× {𝐴}),
ℂ)‘𝑁), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) ∈ ℂ)) |
85 | 84 | adantl 271 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) → (if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁))))
∈ ℂ ↔ if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁))) ∈
ℂ)) |
86 | 82, 85 | mpbird 165 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) → if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁))))
∈ ℂ) |
87 | 86 | ex 113 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → (¬ 𝑁 = 0 → if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁))))
∈ ℂ)) |
88 | | zdceq 8732 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝑁 = 0) |
89 | 36, 88 | mpan2 416 |
. . . . 5
⊢ (𝑁 ∈ ℤ →
DECID 𝑁 =
0) |
90 | | df-dc 779 |
. . . . 5
⊢
(DECID 𝑁 = 0 ↔ (𝑁 = 0 ∨ ¬ 𝑁 = 0)) |
91 | 89, 90 | sylib 120 |
. . . 4
⊢ (𝑁 ∈ ℤ → (𝑁 = 0 ∨ ¬ 𝑁 = 0)) |
92 | 91 | 3ad2ant2 963 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → (𝑁 = 0 ∨ ¬ 𝑁 = 0)) |
93 | 4, 87, 92 | mpjaod 671 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁))))
∈ ℂ) |
94 | | sneq 3436 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) |
95 | 94 | xpeq2d 4428 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (ℕ × {𝑥}) = (ℕ × {𝐴})) |
96 | | iseqeq3 9759 |
. . . . . . 7
⊢ ((ℕ
× {𝑥}) = (ℕ
× {𝐴}) → seq1(
· , (ℕ × {𝑥}), ℂ) = seq1( · , (ℕ
× {𝐴}),
ℂ)) |
97 | 95, 96 | syl 14 |
. . . . . 6
⊢ (𝑥 = 𝐴 → seq1( · , (ℕ ×
{𝑥}), ℂ) = seq1(
· , (ℕ × {𝐴}), ℂ)) |
98 | 97 | fveq1d 5258 |
. . . . 5
⊢ (𝑥 = 𝐴 → (seq1( · , (ℕ ×
{𝑥}), ℂ)‘𝑦) = (seq1( · , (ℕ
× {𝐴}),
ℂ)‘𝑦)) |
99 | 97 | fveq1d 5258 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (seq1( · , (ℕ ×
{𝑥}), ℂ)‘-𝑦) = (seq1( · , (ℕ
× {𝐴}),
ℂ)‘-𝑦)) |
100 | 99 | oveq2d 5610 |
. . . . 5
⊢ (𝑥 = 𝐴 → (1 / (seq1( · , (ℕ
× {𝑥}),
ℂ)‘-𝑦)) = (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑦))) |
101 | 98, 100 | ifeq12d 3393 |
. . . 4
⊢ (𝑥 = 𝐴 → if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}), ℂ)‘𝑦), (1 / (seq1( · ,
(ℕ × {𝑥}),
ℂ)‘-𝑦))) = if(0
< 𝑦, (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘𝑦), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑦)))) |
102 | 101 | ifeq2d 3392 |
. . 3
⊢ (𝑥 = 𝐴 → if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}), ℂ)‘𝑦), (1 / (seq1( · ,
(ℕ × {𝑥}),
ℂ)‘-𝑦)))) =
if(𝑦 = 0, 1, if(0 <
𝑦, (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘𝑦), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑦))))) |
103 | | eqeq1 2091 |
. . . 4
⊢ (𝑦 = 𝑁 → (𝑦 = 0 ↔ 𝑁 = 0)) |
104 | | breq2 3818 |
. . . . 5
⊢ (𝑦 = 𝑁 → (0 < 𝑦 ↔ 0 < 𝑁)) |
105 | | fveq2 5256 |
. . . . 5
⊢ (𝑦 = 𝑁 → (seq1( · , (ℕ ×
{𝐴}), ℂ)‘𝑦) = (seq1( · , (ℕ
× {𝐴}),
ℂ)‘𝑁)) |
106 | | negeq 7596 |
. . . . . . 7
⊢ (𝑦 = 𝑁 → -𝑦 = -𝑁) |
107 | 106 | fveq2d 5260 |
. . . . . 6
⊢ (𝑦 = 𝑁 → (seq1( · , (ℕ ×
{𝐴}), ℂ)‘-𝑦) = (seq1( · , (ℕ
× {𝐴}),
ℂ)‘-𝑁)) |
108 | 107 | oveq2d 5610 |
. . . . 5
⊢ (𝑦 = 𝑁 → (1 / (seq1( · , (ℕ
× {𝐴}),
ℂ)‘-𝑦)) = (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) |
109 | 104, 105,
108 | ifbieq12d 3400 |
. . . 4
⊢ (𝑦 = 𝑁 → if(0 < 𝑦, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑦), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑦))) = if(0
< 𝑁, (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘𝑁), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)))) |
110 | 103, 109 | ifbieq2d 3398 |
. . 3
⊢ (𝑦 = 𝑁 → if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑦), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑦)))) =
if(𝑁 = 0, 1, if(0 <
𝑁, (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘𝑁), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))))) |
111 | | df-iexp 9806 |
. . 3
⊢ ↑ =
(𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ
× {𝑥}),
ℂ)‘𝑦), (1 /
(seq1( · , (ℕ × {𝑥}), ℂ)‘-𝑦))))) |
112 | 102, 110,
111 | ovmpt2g 5717 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ
× {𝐴}),
ℂ)‘𝑁), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)))) ∈ ℂ) → (𝐴↑𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁))))) |
113 | 93, 112 | syld3an3 1217 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → (𝐴↑𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁))))) |