ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fisumcvg2 GIF version

Theorem fisumcvg2 10750
Description: The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.)
Hypotheses
Ref Expression
fsumsers.1 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
fsumsers.2 (𝜑𝑁 ∈ (ℤ𝑀))
fsumsers.3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsumsers.dc ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
fsumsers.4 (𝜑𝐴 ⊆ (𝑀...𝑁))
Assertion
Ref Expression
fisumcvg2 (𝜑 → seq𝑀( + , 𝐹, ℂ) ⇝ (seq𝑀( + , 𝐹, ℂ)‘𝑁))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fisumcvg2
Dummy variables 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2228 . . . 4 𝑚if(𝑘𝐴, 𝐵, 0)
2 nfv 1466 . . . . 5 𝑘 𝑚𝐴
3 nfcsb1v 2961 . . . . 5 𝑘𝑚 / 𝑘𝐵
4 nfcv 2228 . . . . 5 𝑘0
52, 3, 4nfif 3415 . . . 4 𝑘if(𝑚𝐴, 𝑚 / 𝑘𝐵, 0)
6 eleq1w 2148 . . . . 5 (𝑘 = 𝑚 → (𝑘𝐴𝑚𝐴))
7 csbeq1a 2939 . . . . 5 (𝑘 = 𝑚𝐵 = 𝑚 / 𝑘𝐵)
86, 7ifbieq1d 3409 . . . 4 (𝑘 = 𝑚 → if(𝑘𝐴, 𝐵, 0) = if(𝑚𝐴, 𝑚 / 𝑘𝐵, 0))
91, 5, 8cbvmpt 3925 . . 3 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0)) = (𝑚 ∈ ℤ ↦ if(𝑚𝐴, 𝑚 / 𝑘𝐵, 0))
10 fsumsers.3 . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1110ralrimiva 2446 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
123nfel1 2239 . . . . 5 𝑘𝑚 / 𝑘𝐵 ∈ ℂ
137eleq1d 2156 . . . . 5 (𝑘 = 𝑚 → (𝐵 ∈ ℂ ↔ 𝑚 / 𝑘𝐵 ∈ ℂ))
1412, 13rspc 2716 . . . 4 (𝑚𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑚 / 𝑘𝐵 ∈ ℂ))
1511, 14mpan9 275 . . 3 ((𝜑𝑚𝐴) → 𝑚 / 𝑘𝐵 ∈ ℂ)
166dcbid 786 . . . 4 (𝑘 = 𝑚 → (DECID 𝑘𝐴DECID 𝑚𝐴))
17 fsumsers.dc . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
1817ralrimiva 2446 . . . . 5 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝐴)
1918adantr 270 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑀)) → ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝐴)
20 simpr 108 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ (ℤ𝑀))
2116, 19, 20rspcdva 2727 . . 3 ((𝜑𝑚 ∈ (ℤ𝑀)) → DECID 𝑚𝐴)
22 fsumsers.2 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
23 fsumsers.4 . . 3 (𝜑𝐴 ⊆ (𝑀...𝑁))
249, 15, 21, 22, 23fisumcvg 10730 . 2 (𝜑 → seq𝑀( + , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0)), ℂ) ⇝ (seq𝑀( + , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0)), ℂ)‘𝑁))
25 eluzel2 8993 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
2622, 25syl 14 . . 3 (𝜑𝑀 ∈ ℤ)
27 fveq2 5289 . . . . 5 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
2827eleq1d 2156 . . . 4 (𝑘 = 𝑥 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑥) ∈ ℂ))
29 fsumsers.1 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
3010adantlr 461 . . . . . . . 8 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
31 0cnd 7460 . . . . . . . 8 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ¬ 𝑘𝐴) → 0 ∈ ℂ)
3230, 31, 17ifcldadc 3416 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
3329, 32eqeltrd 2164 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
3433ralrimiva 2446 . . . . 5 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
3534adantr 270 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
36 simpr 108 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
3728, 35, 36rspcdva 2727 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ ℂ)
38 eluzelz 8997 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
39 eqid 2088 . . . . . . . 8 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
4039fvmpt2 5370 . . . . . . 7 ((𝑘 ∈ ℤ ∧ if(𝑘𝐴, 𝐵, 0) ∈ ℂ) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘) = if(𝑘𝐴, 𝐵, 0))
4138, 32, 40syl2an2 561 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘) = if(𝑘𝐴, 𝐵, 0))
4229, 41eqtr4d 2123 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘))
4342ralrimiva 2446 . . . 4 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘))
44 nffvmpt1 5300 . . . . . 6 𝑘((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑛)
4544nfeq2 2240 . . . . 5 𝑘(𝐹𝑛) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑛)
46 fveq2 5289 . . . . . 6 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
47 fveq2 5289 . . . . . 6 (𝑘 = 𝑛 → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑛))
4846, 47eqeq12d 2102 . . . . 5 (𝑘 = 𝑛 → ((𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘) ↔ (𝐹𝑛) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑛)))
4945, 48rspc 2716 . . . 4 (𝑛 ∈ (ℤ𝑀) → (∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑘) → (𝐹𝑛) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑛)))
5043, 49mpan9 275 . . 3 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐹𝑛) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))‘𝑛))
51 addcl 7446 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
5251adantl 271 . . 3 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
5326, 37, 50, 52iseqfeq 9861 . 2 (𝜑 → seq𝑀( + , 𝐹, ℂ) = seq𝑀( + , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0)), ℂ))
5453fveq1d 5291 . 2 (𝜑 → (seq𝑀( + , 𝐹, ℂ)‘𝑁) = (seq𝑀( + , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0)), ℂ)‘𝑁))
5524, 53, 543brtr4d 3867 1 (𝜑 → seq𝑀( + , 𝐹, ℂ) ⇝ (seq𝑀( + , 𝐹, ℂ)‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  DECID wdc 780   = wceq 1289  wcel 1438  wral 2359  csb 2931  wss 2997  ifcif 3389   class class class wbr 3837  cmpt 3891  cfv 5002  (class class class)co 5634  cc 7327  0cc0 7329   + caddc 7332  cz 8720  cuz 8988  ...cfz 9393  seqcseq4 9816  cli 10630
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-if 3390  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-ilim 4187  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-frec 6138  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-2 8452  df-n0 8644  df-z 8721  df-uz 8989  df-rp 9104  df-fz 9394  df-iseq 9818  df-seq3 9819  df-exp 9920  df-cj 10241  df-rsqrt 10396  df-abs 10397  df-clim 10631
This theorem is referenced by:  fisumsers  10751  fisumcvg3  10752
  Copyright terms: Public domain W3C validator