ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fisumcvg3 GIF version

Theorem fisumcvg3 10752
Description: A finite sum is convergent. (Contributed by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumcvg3.1 𝑍 = (ℤ𝑀)
fsumcvg3.2 (𝜑𝑀 ∈ ℤ)
fsumcvg3.3 (𝜑𝐴 ∈ Fin)
fsumcvg3.4 (𝜑𝐴𝑍)
fisumcvg3.dc ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
fsumcvg3.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
fsumcvg3.6 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fisumcvg3 (𝜑 → seq𝑀( + , 𝐹, ℂ) ∈ dom ⇝ )
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝑍(𝑘)

Proof of Theorem fisumcvg3
Dummy variables 𝑛 𝑚 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsumcvg3.4 . . . . 5 (𝜑𝐴𝑍)
2 fsumcvg3.1 . . . . . 6 𝑍 = (ℤ𝑀)
3 uzssz 9007 . . . . . . 7 (ℤ𝑀) ⊆ ℤ
4 zssre 8727 . . . . . . 7 ℤ ⊆ ℝ
53, 4sstri 3032 . . . . . 6 (ℤ𝑀) ⊆ ℝ
62, 5eqsstri 3054 . . . . 5 𝑍 ⊆ ℝ
71, 6syl6ss 3035 . . . 4 (𝜑𝐴 ⊆ ℝ)
8 fsumcvg3.3 . . . 4 (𝜑𝐴 ∈ Fin)
9 fimaxre2 10622 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
107, 8, 9syl2anc 403 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
11 arch 8640 . . . . 5 (𝑥 ∈ ℝ → ∃𝑚 ∈ ℕ 𝑥 < 𝑚)
1211ad2antrl 474 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) → ∃𝑚 ∈ ℕ 𝑥 < 𝑚)
13 fsumcvg3.2 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
1413ad2antrr 472 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝑀 ∈ ℤ)
15 simprl 498 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝑚 ∈ ℕ)
1615nnzd 8837 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝑚 ∈ ℤ)
17 zmaxcl 10621 . . . . . . 7 ((𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ) → sup({𝑚, 𝑀}, ℝ, < ) ∈ ℤ)
1816, 14, 17syl2anc 403 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → sup({𝑚, 𝑀}, ℝ, < ) ∈ ℤ)
1915nnred 8407 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝑚 ∈ ℝ)
2014zred 8838 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝑀 ∈ ℝ)
21 maxle2 10610 . . . . . . 7 ((𝑚 ∈ ℝ ∧ 𝑀 ∈ ℝ) → 𝑀 ≤ sup({𝑚, 𝑀}, ℝ, < ))
2219, 20, 21syl2anc 403 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝑀 ≤ sup({𝑚, 𝑀}, ℝ, < ))
23 eluz2 8994 . . . . . 6 (sup({𝑚, 𝑀}, ℝ, < ) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ sup({𝑚, 𝑀}, ℝ, < ) ∈ ℤ ∧ 𝑀 ≤ sup({𝑚, 𝑀}, ℝ, < )))
2414, 18, 22, 23syl3anbrc 1127 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → sup({𝑚, 𝑀}, ℝ, < ) ∈ (ℤ𝑀))
2514adantr 270 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑀 ∈ ℤ)
2618adantr 270 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → sup({𝑚, 𝑀}, ℝ, < ) ∈ ℤ)
271, 2syl6sseq 3070 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ (ℤ𝑀))
2827ad3antrrr 476 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝐴 ⊆ (ℤ𝑀))
2928, 3syl6ss 3035 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝐴 ⊆ ℤ)
30 simpr 108 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧𝐴)
3129, 30sseldd 3024 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧 ∈ ℤ)
3225, 26, 313jca 1123 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → (𝑀 ∈ ℤ ∧ sup({𝑚, 𝑀}, ℝ, < ) ∈ ℤ ∧ 𝑧 ∈ ℤ))
3327ad2antrr 472 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝐴 ⊆ (ℤ𝑀))
3433sselda 3023 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧 ∈ (ℤ𝑀))
35 eluzle 9000 . . . . . . . . . 10 (𝑧 ∈ (ℤ𝑀) → 𝑀𝑧)
3634, 35syl 14 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑀𝑧)
3731zred 8838 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
3819adantr 270 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑚 ∈ ℝ)
3926zred 8838 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → sup({𝑚, 𝑀}, ℝ, < ) ∈ ℝ)
40 simprl 498 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) → 𝑥 ∈ ℝ)
4140ad2antrr 472 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑥 ∈ ℝ)
42 breq1 3840 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑦𝑥𝑧𝑥))
43 simprr 499 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) → ∀𝑦𝐴 𝑦𝑥)
4443ad2antrr 472 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → ∀𝑦𝐴 𝑦𝑥)
4542, 44, 30rspcdva 2727 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧𝑥)
46 simplrr 503 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑥 < 𝑚)
4741, 38, 46ltled 7581 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑥𝑚)
4837, 41, 38, 45, 47letrd 7586 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧𝑚)
4920adantr 270 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑀 ∈ ℝ)
50 maxle1 10609 . . . . . . . . . . 11 ((𝑚 ∈ ℝ ∧ 𝑀 ∈ ℝ) → 𝑚 ≤ sup({𝑚, 𝑀}, ℝ, < ))
5138, 49, 50syl2anc 403 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑚 ≤ sup({𝑚, 𝑀}, ℝ, < ))
5237, 38, 39, 48, 51letrd 7586 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧 ≤ sup({𝑚, 𝑀}, ℝ, < ))
5336, 52jca 300 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → (𝑀𝑧𝑧 ≤ sup({𝑚, 𝑀}, ℝ, < )))
54 elfz2 9400 . . . . . . . 8 (𝑧 ∈ (𝑀...sup({𝑚, 𝑀}, ℝ, < )) ↔ ((𝑀 ∈ ℤ ∧ sup({𝑚, 𝑀}, ℝ, < ) ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ (𝑀𝑧𝑧 ≤ sup({𝑚, 𝑀}, ℝ, < ))))
5532, 53, 54sylanbrc 408 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) ∧ 𝑧𝐴) → 𝑧 ∈ (𝑀...sup({𝑚, 𝑀}, ℝ, < )))
5655ex 113 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → (𝑧𝐴𝑧 ∈ (𝑀...sup({𝑚, 𝑀}, ℝ, < ))))
5756ssrdv 3029 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → 𝐴 ⊆ (𝑀...sup({𝑚, 𝑀}, ℝ, < )))
58 oveq2 5642 . . . . . . 7 (𝑛 = sup({𝑚, 𝑀}, ℝ, < ) → (𝑀...𝑛) = (𝑀...sup({𝑚, 𝑀}, ℝ, < )))
5958sseq2d 3052 . . . . . 6 (𝑛 = sup({𝑚, 𝑀}, ℝ, < ) → (𝐴 ⊆ (𝑀...𝑛) ↔ 𝐴 ⊆ (𝑀...sup({𝑚, 𝑀}, ℝ, < ))))
6059rspcev 2722 . . . . 5 ((sup({𝑚, 𝑀}, ℝ, < ) ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...sup({𝑚, 𝑀}, ℝ, < ))) → ∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛))
6124, 57, 60syl2anc 403 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 < 𝑚)) → ∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛))
6212, 61rexlimddv 2493 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦𝑥)) → ∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛))
6310, 62rexlimddv 2493 . 2 (𝜑 → ∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛))
642eleq2i 2154 . . . . . 6 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
65 fsumcvg3.5 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
6664, 65sylan2br 282 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
6766adantlr 461 . . . 4 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
68 simprl 498 . . . 4 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → 𝑛 ∈ (ℤ𝑀))
69 fsumcvg3.6 . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
7069adantlr 461 . . . 4 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
71 fisumcvg3.dc . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
7271adantlr 461 . . . 4 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) ∧ 𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
73 simprr 499 . . . 4 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → 𝐴 ⊆ (𝑀...𝑛))
7467, 68, 70, 72, 73fisumcvg2 10750 . . 3 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → seq𝑀( + , 𝐹, ℂ) ⇝ (seq𝑀( + , 𝐹, ℂ)‘𝑛))
75 climrel 10632 . . . 4 Rel ⇝
7675releldmi 4662 . . 3 (seq𝑀( + , 𝐹, ℂ) ⇝ (seq𝑀( + , 𝐹, ℂ)‘𝑛) → seq𝑀( + , 𝐹, ℂ) ∈ dom ⇝ )
7774, 76syl 14 . 2 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → seq𝑀( + , 𝐹, ℂ) ∈ dom ⇝ )
7863, 77rexlimddv 2493 1 (𝜑 → seq𝑀( + , 𝐹, ℂ) ∈ dom ⇝ )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  DECID wdc 780  w3a 924   = wceq 1289  wcel 1438  wral 2359  wrex 2360  wss 2997  ifcif 3389  {cpr 3442   class class class wbr 3837  dom cdm 4428  cfv 5002  (class class class)co 5634  Fincfn 6437  supcsup 6656  cc 7327  cr 7328  0cc0 7329   + caddc 7332   < clt 7501  cle 7502  cn 8394  cz 8720  cuz 8988  ...cfz 9393  seqcseq4 9816  cli 10630
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442  ax-arch 7443  ax-caucvg 7444
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-if 3390  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-ilim 4187  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-frec 6138  df-er 6272  df-en 6438  df-fin 6440  df-sup 6658  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-2 8452  df-3 8453  df-4 8454  df-n0 8644  df-z 8721  df-uz 8989  df-rp 9104  df-fz 9394  df-iseq 9818  df-seq3 9819  df-exp 9920  df-cj 10241  df-re 10242  df-im 10243  df-rsqrt 10396  df-abs 10397  df-clim 10631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator