Step | Hyp | Ref
| Expression |
1 | | simpr 108 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
2 | | fisumser.1 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = 𝐴) |
3 | | fisumser.3 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℂ) |
4 | 2, 3 | eqeltrd 2164 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
5 | 4 | adantr 270 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℂ) |
6 | | 0cnd 7481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑘 ∈ (𝑀...𝑁)) → 0 ∈ ℂ) |
7 | | eluzelz 9028 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ ℤ) |
8 | | eluzel2 9024 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
9 | | fsumser.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
10 | | eluzelz 9028 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
11 | 9, 10 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℤ) |
12 | 11 | adantr 270 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℤ) |
13 | | fzdcel 9454 |
. . . . . . 7
⊢ ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
DECID 𝑘
∈ (𝑀...𝑁)) |
14 | 7, 8, 12, 13 | syl2an23an 1235 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ (𝑀...𝑁)) |
15 | 5, 6, 14 | ifcldadc 3420 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0) ∈ ℂ) |
16 | | eleq1w 2148 |
. . . . . . 7
⊢ (𝑚 = 𝑘 → (𝑚 ∈ (𝑀...𝑁) ↔ 𝑘 ∈ (𝑀...𝑁))) |
17 | | fveq2 5305 |
. . . . . . 7
⊢ (𝑚 = 𝑘 → (𝐹‘𝑚) = (𝐹‘𝑘)) |
18 | 16, 17 | ifbieq1d 3413 |
. . . . . 6
⊢ (𝑚 = 𝑘 → if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0) = if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0)) |
19 | | eqid 2088 |
. . . . . 6
⊢ (𝑚 ∈
(ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0)) = (𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0)) |
20 | 18, 19 | fvmptg 5380 |
. . . . 5
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0) ∈ ℂ) → ((𝑚 ∈
(ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0)) |
21 | 1, 15, 20 | syl2anc 403 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0)) |
22 | 2 | ifeq1d 3408 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0) = if(𝑘 ∈ (𝑀...𝑁), 𝐴, 0)) |
23 | 21, 22 | eqtrd 2120 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), 𝐴, 0)) |
24 | | elfzuz 9436 |
. . . 4
⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) |
25 | 24, 3 | sylan2 280 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
26 | | ssidd 3045 |
. . 3
⊢ (𝜑 → (𝑀...𝑁) ⊆ (𝑀...𝑁)) |
27 | 23, 9, 25, 14, 26 | fisumsers 10788 |
. 2
⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , (𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0)), ℂ)‘𝑁)) |
28 | 24, 21 | sylan2 280 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0)) |
29 | | iftrue 3398 |
. . . . 5
⊢ (𝑘 ∈ (𝑀...𝑁) → if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0) = (𝐹‘𝑘)) |
30 | 29 | adantl 271 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝑘 ∈ (𝑀...𝑁), (𝐹‘𝑘), 0) = (𝐹‘𝑘)) |
31 | 28, 30 | eqtrd 2120 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑘) = (𝐹‘𝑘)) |
32 | | simpr 108 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝑥 ∈ (ℤ≥‘𝑀)) |
33 | | fveq2 5305 |
. . . . . . . 8
⊢ (𝑘 = 𝑥 → (𝐹‘𝑘) = (𝐹‘𝑥)) |
34 | 33 | eleq1d 2156 |
. . . . . . 7
⊢ (𝑘 = 𝑥 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑥) ∈ ℂ)) |
35 | 4 | ralrimiva 2446 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℂ) |
36 | 35 | adantr 270 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ∀𝑘 ∈
(ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℂ) |
37 | 34, 36, 32 | rspcdva 2727 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ ℂ) |
38 | | 0cnd 7481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 0 ∈
ℂ) |
39 | | eluzelz 9028 |
. . . . . . 7
⊢ (𝑥 ∈
(ℤ≥‘𝑀) → 𝑥 ∈ ℤ) |
40 | | eluzel2 9024 |
. . . . . . 7
⊢ (𝑥 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
41 | 11 | adantr 270 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℤ) |
42 | | fzdcel 9454 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
DECID 𝑥
∈ (𝑀...𝑁)) |
43 | 39, 40, 41, 42 | syl2an23an 1235 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → DECID
𝑥 ∈ (𝑀...𝑁)) |
44 | 37, 38, 43 | ifcldcd 3426 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → if(𝑥 ∈ (𝑀...𝑁), (𝐹‘𝑥), 0) ∈ ℂ) |
45 | | eleq1w 2148 |
. . . . . . 7
⊢ (𝑚 = 𝑥 → (𝑚 ∈ (𝑀...𝑁) ↔ 𝑥 ∈ (𝑀...𝑁))) |
46 | | fveq2 5305 |
. . . . . . 7
⊢ (𝑚 = 𝑥 → (𝐹‘𝑚) = (𝐹‘𝑥)) |
47 | 45, 46 | ifbieq1d 3413 |
. . . . . 6
⊢ (𝑚 = 𝑥 → if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0) = if(𝑥 ∈ (𝑀...𝑁), (𝐹‘𝑥), 0)) |
48 | 47, 19 | fvmptg 5380 |
. . . . 5
⊢ ((𝑥 ∈
(ℤ≥‘𝑀) ∧ if(𝑥 ∈ (𝑀...𝑁), (𝐹‘𝑥), 0) ∈ ℂ) → ((𝑚 ∈
(ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑥) = if(𝑥 ∈ (𝑀...𝑁), (𝐹‘𝑥), 0)) |
49 | 32, 44, 48 | syl2anc 403 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑥) = if(𝑥 ∈ (𝑀...𝑁), (𝐹‘𝑥), 0)) |
50 | 49, 44 | eqeltrd 2164 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0))‘𝑥) ∈ ℂ) |
51 | 34 | cbvralv 2590 |
. . . . 5
⊢
(∀𝑘 ∈
(ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℂ ↔ ∀𝑥 ∈
(ℤ≥‘𝑀)(𝐹‘𝑥) ∈ ℂ) |
52 | 35, 51 | sylib 120 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐹‘𝑥) ∈ ℂ) |
53 | 52 | r19.21bi 2461 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ ℂ) |
54 | | addcl 7467 |
. . . 4
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) |
55 | 54 | adantl 271 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ) |
56 | 9, 31, 50, 53, 55 | iseqfveq 9894 |
. 2
⊢ (𝜑 → (seq𝑀( + , (𝑚 ∈ (ℤ≥‘𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹‘𝑚), 0)), ℂ)‘𝑁) = (seq𝑀( + , 𝐹, ℂ)‘𝑁)) |
57 | 27, 56 | eqtrd 2120 |
1
⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹, ℂ)‘𝑁)) |