Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fisumser GIF version

Theorem fisumser 10790
 Description: A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 10806 and fsump1 10814, which should make our notation clear and from which, along with closure fsumcl 10794, we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 1-Oct-2022.) Use fsum3ser 10791 instead. (New usage is discouraged.)
Hypotheses
Ref Expression
fisumser.1 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = 𝐴)
fsumser.2 (𝜑𝑁 ∈ (ℤ𝑀))
fisumser.3 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
fisumser (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹, ℂ)‘𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fisumser
Dummy variables 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 108 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
2 fisumser.1 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = 𝐴)
3 fisumser.3 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
42, 3eqeltrd 2164 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
54adantr 270 . . . . . 6 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℂ)
6 0cnd 7481 . . . . . 6 (((𝜑𝑘 ∈ (ℤ𝑀)) ∧ ¬ 𝑘 ∈ (𝑀...𝑁)) → 0 ∈ ℂ)
7 eluzelz 9028 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
8 eluzel2 9024 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
9 fsumser.2 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ𝑀))
10 eluzelz 9028 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
119, 10syl 14 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
1211adantr 270 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
13 fzdcel 9454 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑘 ∈ (𝑀...𝑁))
147, 8, 12, 13syl2an23an 1235 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘 ∈ (𝑀...𝑁))
155, 6, 14ifcldadc 3420 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0) ∈ ℂ)
16 eleq1w 2148 . . . . . . 7 (𝑚 = 𝑘 → (𝑚 ∈ (𝑀...𝑁) ↔ 𝑘 ∈ (𝑀...𝑁)))
17 fveq2 5305 . . . . . . 7 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
1816, 17ifbieq1d 3413 . . . . . 6 (𝑚 = 𝑘 → if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0) = if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0))
19 eqid 2088 . . . . . 6 (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0)) = (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))
2018, 19fvmptg 5380 . . . . 5 ((𝑘 ∈ (ℤ𝑀) ∧ if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0) ∈ ℂ) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0))
211, 15, 20syl2anc 403 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0))
222ifeq1d 3408 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0) = if(𝑘 ∈ (𝑀...𝑁), 𝐴, 0))
2321, 22eqtrd 2120 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), 𝐴, 0))
24 elfzuz 9436 . . . 4 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ𝑀))
2524, 3sylan2 280 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
26 ssidd 3045 . . 3 (𝜑 → (𝑀...𝑁) ⊆ (𝑀...𝑁))
2723, 9, 25, 14, 26fisumsers 10788 . 2 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0)), ℂ)‘𝑁))
2824, 21sylan2 280 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0))
29 iftrue 3398 . . . . 5 (𝑘 ∈ (𝑀...𝑁) → if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0) = (𝐹𝑘))
3029adantl 271 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → if(𝑘 ∈ (𝑀...𝑁), (𝐹𝑘), 0) = (𝐹𝑘))
3128, 30eqtrd 2120 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑘) = (𝐹𝑘))
32 simpr 108 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
33 fveq2 5305 . . . . . . . 8 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
3433eleq1d 2156 . . . . . . 7 (𝑘 = 𝑥 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑥) ∈ ℂ))
354ralrimiva 2446 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
3635adantr 270 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
3734, 36, 32rspcdva 2727 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ ℂ)
38 0cnd 7481 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → 0 ∈ ℂ)
39 eluzelz 9028 . . . . . . 7 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
40 eluzel2 9024 . . . . . . 7 (𝑥 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
4111adantr 270 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
42 fzdcel 9454 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑥 ∈ (𝑀...𝑁))
4339, 40, 41, 42syl2an23an 1235 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → DECID 𝑥 ∈ (𝑀...𝑁))
4437, 38, 43ifcldcd 3426 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → if(𝑥 ∈ (𝑀...𝑁), (𝐹𝑥), 0) ∈ ℂ)
45 eleq1w 2148 . . . . . . 7 (𝑚 = 𝑥 → (𝑚 ∈ (𝑀...𝑁) ↔ 𝑥 ∈ (𝑀...𝑁)))
46 fveq2 5305 . . . . . . 7 (𝑚 = 𝑥 → (𝐹𝑚) = (𝐹𝑥))
4745, 46ifbieq1d 3413 . . . . . 6 (𝑚 = 𝑥 → if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0) = if(𝑥 ∈ (𝑀...𝑁), (𝐹𝑥), 0))
4847, 19fvmptg 5380 . . . . 5 ((𝑥 ∈ (ℤ𝑀) ∧ if(𝑥 ∈ (𝑀...𝑁), (𝐹𝑥), 0) ∈ ℂ) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑥) = if(𝑥 ∈ (𝑀...𝑁), (𝐹𝑥), 0))
4932, 44, 48syl2anc 403 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑥) = if(𝑥 ∈ (𝑀...𝑁), (𝐹𝑥), 0))
5049, 44eqeltrd 2164 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0))‘𝑥) ∈ ℂ)
5134cbvralv 2590 . . . . 5 (∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ ↔ ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ ℂ)
5235, 51sylib 120 . . . 4 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ ℂ)
5352r19.21bi 2461 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ ℂ)
54 addcl 7467 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
5554adantl 271 . . 3 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
569, 31, 50, 53, 55iseqfveq 9894 . 2 (𝜑 → (seq𝑀( + , (𝑚 ∈ (ℤ𝑀) ↦ if(𝑚 ∈ (𝑀...𝑁), (𝐹𝑚), 0)), ℂ)‘𝑁) = (seq𝑀( + , 𝐹, ℂ)‘𝑁))
5727, 56eqtrd 2120 1 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹, ℂ)‘𝑁))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 102  DECID wdc 780   = wceq 1289   ∈ wcel 1438  ∀wral 2359  ifcif 3393   ↦ cmpt 3899  ‘cfv 5015  (class class class)co 5652  ℂcc 7348  0cc0 7350   + caddc 7353  ℤcz 8750  ℤ≥cuz 9019  ...cfz 9424  seqcseq4 9851  Σcsu 10742 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403  ax-cnex 7436  ax-resscn 7437  ax-1cn 7438  ax-1re 7439  ax-icn 7440  ax-addcl 7441  ax-addrcl 7442  ax-mulcl 7443  ax-mulrcl 7444  ax-addcom 7445  ax-mulcom 7446  ax-addass 7447  ax-mulass 7448  ax-distr 7449  ax-i2m1 7450  ax-0lt1 7451  ax-1rid 7452  ax-0id 7453  ax-rnegex 7454  ax-precex 7455  ax-cnre 7456  ax-pre-ltirr 7457  ax-pre-ltwlin 7458  ax-pre-lttrn 7459  ax-pre-apti 7460  ax-pre-ltadd 7461  ax-pre-mulgt0 7462  ax-pre-mulext 7463  ax-arch 7464  ax-caucvg 7465 This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-if 3394  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-ilim 4196  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-isom 5024  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-irdg 6135  df-frec 6156  df-1o 6181  df-oadd 6185  df-er 6292  df-en 6458  df-dom 6459  df-fin 6460  df-pnf 7524  df-mnf 7525  df-xr 7526  df-ltxr 7527  df-le 7528  df-sub 7655  df-neg 7656  df-reap 8052  df-ap 8059  df-div 8140  df-inn 8423  df-2 8481  df-3 8482  df-4 8483  df-n0 8674  df-z 8751  df-uz 9020  df-q 9105  df-rp 9135  df-fz 9425  df-fzo 9554  df-iseq 9853  df-seq3 9854  df-exp 9955  df-ihash 10184  df-cj 10276  df-re 10277  df-im 10278  df-rsqrt 10431  df-abs 10432  df-clim 10667  df-isum 10743 This theorem is referenced by:  fsum3ser  10791  isumclim3  10817
 Copyright terms: Public domain W3C validator