ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ialgrp1 GIF version

Theorem ialgrp1 10806
Description: The value of the algorithm iterator 𝑅 at (𝐾 + 1). (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
algrf.1 𝑍 = (ℤ𝑀)
algrf.2 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}), 𝑆)
algrf.3 (𝜑𝑀 ∈ ℤ)
algrf.4 (𝜑𝐴𝑆)
algrf.5 (𝜑𝐹:𝑆𝑆)
algrf.s (𝜑𝑆𝑉)
Assertion
Ref Expression
ialgrp1 ((𝜑𝐾𝑍) → (𝑅‘(𝐾 + 1)) = (𝐹‘(𝑅𝐾)))

Proof of Theorem ialgrp1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algrf.2 . . . 4 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}), 𝑆)
21fveq1i 5252 . . 3 (𝑅‘(𝐾 + 1)) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}), 𝑆)‘(𝐾 + 1))
3 simpr 108 . . . . 5 ((𝜑𝐾𝑍) → 𝐾𝑍)
4 algrf.1 . . . . 5 𝑍 = (ℤ𝑀)
53, 4syl6eleq 2175 . . . 4 ((𝜑𝐾𝑍) → 𝐾 ∈ (ℤ𝑀))
6 algrf.4 . . . . . 6 (𝜑𝐴𝑆)
76adantr 270 . . . . 5 ((𝜑𝐾𝑍) → 𝐴𝑆)
84, 7ialgrlemconst 10803 . . . 4 (((𝜑𝐾𝑍) ∧ 𝑥 ∈ (ℤ𝑀)) → ((𝑍 × {𝐴})‘𝑥) ∈ 𝑆)
9 algrf.5 . . . . . 6 (𝜑𝐹:𝑆𝑆)
109adantr 270 . . . . 5 ((𝜑𝐾𝑍) → 𝐹:𝑆𝑆)
1110ialgrlem1st 10802 . . . 4 (((𝜑𝐾𝑍) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(𝐹 ∘ 1st )𝑦) ∈ 𝑆)
125, 8, 11iseqp1 9755 . . 3 ((𝜑𝐾𝑍) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}), 𝑆)‘(𝐾 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}), 𝑆)‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))))
132, 12syl5eq 2127 . 2 ((𝜑𝐾𝑍) → (𝑅‘(𝐾 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}), 𝑆)‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))))
145, 8, 11iseqcl 9754 . . . 4 ((𝜑𝐾𝑍) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}), 𝑆)‘𝐾) ∈ 𝑆)
154peano2uzs 8965 . . . . . 6 (𝐾𝑍 → (𝐾 + 1) ∈ 𝑍)
16 fvconst2g 5449 . . . . . 6 ((𝐴𝑆 ∧ (𝐾 + 1) ∈ 𝑍) → ((𝑍 × {𝐴})‘(𝐾 + 1)) = 𝐴)
176, 15, 16syl2an 283 . . . . 5 ((𝜑𝐾𝑍) → ((𝑍 × {𝐴})‘(𝐾 + 1)) = 𝐴)
1817, 7eqeltrd 2159 . . . 4 ((𝜑𝐾𝑍) → ((𝑍 × {𝐴})‘(𝐾 + 1)) ∈ 𝑆)
19 algrflemg 5928 . . . 4 (((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}), 𝑆)‘𝐾) ∈ 𝑆 ∧ ((𝑍 × {𝐴})‘(𝐾 + 1)) ∈ 𝑆) → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}), 𝑆)‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}), 𝑆)‘𝐾)))
2014, 18, 19syl2anc 403 . . 3 ((𝜑𝐾𝑍) → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}), 𝑆)‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}), 𝑆)‘𝐾)))
211fveq1i 5252 . . . 4 (𝑅𝐾) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}), 𝑆)‘𝐾)
2221fveq2i 5254 . . 3 (𝐹‘(𝑅𝐾)) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}), 𝑆)‘𝐾))
2320, 22syl6reqr 2134 . 2 ((𝜑𝐾𝑍) → (𝐹‘(𝑅𝐾)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}), 𝑆)‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))))
2413, 23eqtr4d 2118 1 ((𝜑𝐾𝑍) → (𝑅‘(𝐾 + 1)) = (𝐹‘(𝑅𝐾)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1285  wcel 1434  {csn 3422   × cxp 4397  ccom 4403  wf 4963  cfv 4967  (class class class)co 5589  1st c1st 5842  1c1 7252   + caddc 7254  cz 8644  cuz 8912  seqcseq 9738
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-iinf 4365  ax-cnex 7337  ax-resscn 7338  ax-1cn 7339  ax-1re 7340  ax-icn 7341  ax-addcl 7342  ax-addrcl 7343  ax-mulcl 7344  ax-addcom 7346  ax-addass 7348  ax-distr 7350  ax-i2m1 7351  ax-0lt1 7352  ax-0id 7354  ax-rnegex 7355  ax-cnre 7357  ax-pre-ltirr 7358  ax-pre-ltwlin 7359  ax-pre-lttrn 7360  ax-pre-ltadd 7362
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4083  df-iord 4156  df-on 4158  df-ilim 4159  df-suc 4161  df-iom 4368  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-dm 4409  df-rn 4410  df-res 4411  df-ima 4412  df-iota 4932  df-fun 4969  df-fn 4970  df-f 4971  df-f1 4972  df-fo 4973  df-f1o 4974  df-fv 4975  df-riota 5545  df-ov 5592  df-oprab 5593  df-mpt2 5594  df-1st 5844  df-2nd 5845  df-recs 6000  df-frec 6086  df-pnf 7425  df-mnf 7426  df-xr 7427  df-ltxr 7428  df-le 7429  df-sub 7556  df-neg 7557  df-inn 8315  df-n0 8564  df-z 8645  df-uz 8913  df-iseq 9739
This theorem is referenced by:  ialginv  10807  ialgcvg  10808  ialgcvga  10811  ialgfx  10812
  Copyright terms: Public domain W3C validator