![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iseq1p | GIF version |
Description: Removing the first term from a sequence. (Contributed by Jim Kingdon, 16-Aug-2021.) |
Ref | Expression |
---|---|
iseqsplit.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
iseqsplit.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
iseqsplit.3 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) |
iseqsplit.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
iseq1p.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
iseq1p.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
Ref | Expression |
---|---|
iseq1p | ⊢ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = ((𝐹‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseqsplit.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
2 | iseqsplit.2 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
3 | iseqsplit.3 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) | |
4 | iseqsplit.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
5 | iseq1p.4 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
6 | uzid 8926 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
7 | 5, 6 | syl 14 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
8 | iseq1p.5 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) | |
9 | 1, 2, 3, 4, 7, 8 | iseqsplit 9771 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑁))) |
10 | 5, 8, 1 | iseq1 9750 | . . 3 ⊢ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (𝐹‘𝑀)) |
11 | 10 | oveq1d 5604 | . 2 ⊢ (𝜑 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑁)) = ((𝐹‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑁))) |
12 | 9, 11 | eqtrd 2115 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = ((𝐹‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑁))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∧ w3a 920 = wceq 1285 ∈ wcel 1434 ‘cfv 4967 (class class class)co 5589 1c1 7252 + caddc 7254 ℤcz 8644 ℤ≥cuz 8912 seqcseq 9738 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3919 ax-sep 3922 ax-nul 3930 ax-pow 3974 ax-pr 3999 ax-un 4223 ax-setind 4315 ax-iinf 4365 ax-cnex 7337 ax-resscn 7338 ax-1cn 7339 ax-1re 7340 ax-icn 7341 ax-addcl 7342 ax-addrcl 7343 ax-mulcl 7344 ax-addcom 7346 ax-addass 7348 ax-distr 7350 ax-i2m1 7351 ax-0lt1 7352 ax-0id 7354 ax-rnegex 7355 ax-cnre 7357 ax-pre-ltirr 7358 ax-pre-ltwlin 7359 ax-pre-lttrn 7360 ax-pre-ltadd 7362 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2614 df-sbc 2827 df-csb 2920 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-nul 3270 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-int 3663 df-iun 3706 df-br 3812 df-opab 3866 df-mpt 3867 df-tr 3902 df-id 4083 df-iord 4156 df-on 4158 df-ilim 4159 df-suc 4161 df-iom 4368 df-xp 4405 df-rel 4406 df-cnv 4407 df-co 4408 df-dm 4409 df-rn 4410 df-res 4411 df-ima 4412 df-iota 4932 df-fun 4969 df-fn 4970 df-f 4971 df-f1 4972 df-fo 4973 df-f1o 4974 df-fv 4975 df-riota 5545 df-ov 5592 df-oprab 5593 df-mpt2 5594 df-1st 5844 df-2nd 5845 df-recs 6000 df-frec 6086 df-pnf 7425 df-mnf 7426 df-xr 7427 df-ltxr 7428 df-le 7429 df-sub 7556 df-neg 7557 df-inn 8315 df-n0 8564 df-z 8645 df-uz 8913 df-fz 9318 df-iseq 9739 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |