ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqeq1 GIF version

Theorem iseqeq1 9757
Description: Equality theorem for the sequence builder operation. (Contributed by Jim Kingdon, 30-May-2020.)
Assertion
Ref Expression
iseqeq1 (𝑀 = 𝑁 → seq𝑀( + , 𝐹, 𝑆) = seq𝑁( + , 𝐹, 𝑆))

Proof of Theorem iseqeq1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . . . 6 (𝑀 = 𝑁𝑀 = 𝑁)
2 fveq2 5256 . . . . . 6 (𝑀 = 𝑁 → (𝐹𝑀) = (𝐹𝑁))
31, 2opeq12d 3607 . . . . 5 (𝑀 = 𝑁 → ⟨𝑀, (𝐹𝑀)⟩ = ⟨𝑁, (𝐹𝑁)⟩)
4 freceq2 6093 . . . . 5 (⟨𝑀, (𝐹𝑀)⟩ = ⟨𝑁, (𝐹𝑁)⟩ → frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩))
53, 4syl 14 . . . 4 (𝑀 = 𝑁 → frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩))
6 fveq2 5256 . . . . . 6 (𝑀 = 𝑁 → (ℤ𝑀) = (ℤ𝑁))
7 eqid 2085 . . . . . 6 𝑆 = 𝑆
8 mpt2eq12 5647 . . . . . 6 (((ℤ𝑀) = (ℤ𝑁) ∧ 𝑆 = 𝑆) → (𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) = (𝑥 ∈ (ℤ𝑁), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩))
96, 7, 8sylancl 404 . . . . 5 (𝑀 = 𝑁 → (𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) = (𝑥 ∈ (ℤ𝑁), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩))
10 freceq1 6092 . . . . 5 ((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) = (𝑥 ∈ (ℤ𝑁), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) → frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩) = frec((𝑥 ∈ (ℤ𝑁), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩))
119, 10syl 14 . . . 4 (𝑀 = 𝑁 → frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩) = frec((𝑥 ∈ (ℤ𝑁), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩))
125, 11eqtrd 2117 . . 3 (𝑀 = 𝑁 → frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑁), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩))
1312rneqd 4625 . 2 (𝑀 = 𝑁 → ran frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = ran frec((𝑥 ∈ (ℤ𝑁), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩))
14 df-iseq 9755 . 2 seq𝑀( + , 𝐹, 𝑆) = ran frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
15 df-iseq 9755 . 2 seq𝑁( + , 𝐹, 𝑆) = ran frec((𝑥 ∈ (ℤ𝑁), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩)
1613, 14, 153eqtr4g 2142 1 (𝑀 = 𝑁 → seq𝑀( + , 𝐹, 𝑆) = seq𝑁( + , 𝐹, 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1287  cop 3428  ran crn 4405  cfv 4972  (class class class)co 5594  cmpt2 5596  freccfrec 6090  1c1 7272   + caddc 7274  cuz 8928  seqcseq 9754
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-v 2616  df-un 2990  df-in 2992  df-ss 2999  df-sn 3431  df-pr 3432  df-op 3434  df-uni 3631  df-br 3815  df-opab 3869  df-mpt 3870  df-cnv 4412  df-dm 4414  df-rn 4415  df-res 4416  df-iota 4937  df-fv 4980  df-oprab 5598  df-mpt2 5599  df-recs 6005  df-frec 6091  df-iseq 9755
This theorem is referenced by:  iseqid  9796  iseqz  9799  ibcval5  10020  bcn2  10021  iiserex  10565
  Copyright terms: Public domain W3C validator