Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqeq3 GIF version

Theorem iseqeq3 9914
 Description: Equality theorem for the sequence builder operation. New proofs should use seqeq3 9917 instead (together with iseqsst 9940 or iseqseq3 9956 if need be). (Contributed by Jim Kingdon, 30-May-2020.) (New usage is discouraged.)
Assertion
Ref Expression
iseqeq3 (𝐹 = 𝐺 → seq𝑀( + , 𝐹, 𝑆) = seq𝑀( + , 𝐺, 𝑆))

Proof of Theorem iseqeq3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 944 . . . . . . . 8 ((𝐹 = 𝐺𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆) → 𝐹 = 𝐺)
21fveq1d 5320 . . . . . . 7 ((𝐹 = 𝐺𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆) → (𝐹‘(𝑥 + 1)) = (𝐺‘(𝑥 + 1)))
32oveq2d 5682 . . . . . 6 ((𝐹 = 𝐺𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆) → (𝑦 + (𝐹‘(𝑥 + 1))) = (𝑦 + (𝐺‘(𝑥 + 1))))
43opeq2d 3635 . . . . 5 ((𝐹 = 𝐺𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆) → ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩ = ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩)
54mpt2eq3dva 5727 . . . 4 (𝐹 = 𝐺 → (𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) = (𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩))
6 fveq1 5317 . . . . 5 (𝐹 = 𝐺 → (𝐹𝑀) = (𝐺𝑀))
76opeq2d 3635 . . . 4 (𝐹 = 𝐺 → ⟨𝑀, (𝐹𝑀)⟩ = ⟨𝑀, (𝐺𝑀)⟩)
8 freceq1 6171 . . . . 5 ((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) = (𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩) → frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩))
9 freceq2 6172 . . . . 5 (⟨𝑀, (𝐹𝑀)⟩ = ⟨𝑀, (𝐺𝑀)⟩ → frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐺𝑀)⟩))
108, 9sylan9eq 2141 . . . 4 (((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) = (𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩) ∧ ⟨𝑀, (𝐹𝑀)⟩ = ⟨𝑀, (𝐺𝑀)⟩) → frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐺𝑀)⟩))
115, 7, 10syl2anc 404 . . 3 (𝐹 = 𝐺 → frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐺𝑀)⟩))
1211rneqd 4677 . 2 (𝐹 = 𝐺 → ran frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = ran frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐺𝑀)⟩))
13 df-iseq 9907 . 2 seq𝑀( + , 𝐹, 𝑆) = ran frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
14 df-iseq 9907 . 2 seq𝑀( + , 𝐺, 𝑆) = ran frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐺𝑀)⟩)
1512, 13, 143eqtr4g 2146 1 (𝐹 = 𝐺 → seq𝑀( + , 𝐹, 𝑆) = seq𝑀( + , 𝐺, 𝑆))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ w3a 925   = wceq 1290   ∈ wcel 1439  ⟨cop 3453  ran crn 4452  ‘cfv 5028  (class class class)co 5666   ↦ cmpt2 5668  freccfrec 6169  1c1 7405   + caddc 7407  ℤ≥cuz 9073  seqcseq4 9905 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071 This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-un 3004  df-in 3006  df-ss 3013  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-mpt 3907  df-cnv 4459  df-dm 4461  df-rn 4462  df-res 4463  df-iota 4993  df-fv 5036  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-recs 6084  df-frec 6170  df-iseq 9907 This theorem is referenced by:  seqeq3  9917  sumeq1  10798  sumeq2  10802  cbvsum  10803  isummo  10827  zisum  10828  fisum  10832  isumz  10835  fsumadd  10854
 Copyright terms: Public domain W3C validator