Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqhomo GIF version

Theorem iseqhomo 10003
 Description: Apply a homomorphism to a sequence. New proofs should use seq3homo 10005 (Contributed by Jim Kingdon, 21-Aug-2021.) (New usage is discouraged.)
Hypotheses
Ref Expression
iseqhomo.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
iseqhomo.2 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
iseqhomo.s (𝜑𝑆𝑉)
iseqhomo.3 (𝜑𝑁 ∈ (ℤ𝑀))
iseqhomo.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)))
iseqhomo.5 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐻‘(𝐹𝑥)) = (𝐺𝑥))
iseqhomo.g ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
iseqhomo.qcl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
Assertion
Ref Expression
iseqhomo (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑁)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑁))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐻,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝐺   𝑥, + ,𝑦   𝑥,𝑄,𝑦   𝑥,𝑆,𝑦   𝑦,𝐺
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem iseqhomo
Dummy variables 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqhomo.3 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
2 fveq2 5318 . . . . . 6 (𝑤 = 𝑀 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑀))
32fveq2d 5322 . . . . 5 (𝑤 = 𝑀 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑀)))
4 fveq2 5318 . . . . 5 (𝑤 = 𝑀 → (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑀))
53, 4eqeq12d 2103 . . . 4 (𝑤 = 𝑀 → ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤) ↔ (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑀)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑀)))
65imbi2d 229 . . 3 (𝑤 = 𝑀 → ((𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤)) ↔ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑀)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑀))))
7 fveq2 5318 . . . . . 6 (𝑤 = 𝑛 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑛))
87fveq2d 5322 . . . . 5 (𝑤 = 𝑛 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛)))
9 fveq2 5318 . . . . 5 (𝑤 = 𝑛 → (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑛))
108, 9eqeq12d 2103 . . . 4 (𝑤 = 𝑛 → ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤) ↔ (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑛)))
1110imbi2d 229 . . 3 (𝑤 = 𝑛 → ((𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤)) ↔ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑛))))
12 fveq2 5318 . . . . . 6 (𝑤 = (𝑛 + 1) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)))
1312fveq2d 5322 . . . . 5 (𝑤 = (𝑛 + 1) → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))))
14 fveq2 5318 . . . . 5 (𝑤 = (𝑛 + 1) → (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤) = (seq𝑀(𝑄, 𝐺, 𝑆)‘(𝑛 + 1)))
1513, 14eqeq12d 2103 . . . 4 (𝑤 = (𝑛 + 1) → ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤) ↔ (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺, 𝑆)‘(𝑛 + 1))))
1615imbi2d 229 . . 3 (𝑤 = (𝑛 + 1) → ((𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤)) ↔ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺, 𝑆)‘(𝑛 + 1)))))
17 fveq2 5318 . . . . . 6 (𝑤 = 𝑁 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑁))
1817fveq2d 5322 . . . . 5 (𝑤 = 𝑁 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑁)))
19 fveq2 5318 . . . . 5 (𝑤 = 𝑁 → (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑁))
2018, 19eqeq12d 2103 . . . 4 (𝑤 = 𝑁 → ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤) ↔ (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑁)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑁)))
2120imbi2d 229 . . 3 (𝑤 = 𝑁 → ((𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤)) ↔ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑁)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑁))))
22 fveq2 5318 . . . . . . . 8 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
2322fveq2d 5322 . . . . . . 7 (𝑥 = 𝑀 → (𝐻‘(𝐹𝑥)) = (𝐻‘(𝐹𝑀)))
24 fveq2 5318 . . . . . . 7 (𝑥 = 𝑀 → (𝐺𝑥) = (𝐺𝑀))
2523, 24eqeq12d 2103 . . . . . 6 (𝑥 = 𝑀 → ((𝐻‘(𝐹𝑥)) = (𝐺𝑥) ↔ (𝐻‘(𝐹𝑀)) = (𝐺𝑀)))
26 iseqhomo.5 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐻‘(𝐹𝑥)) = (𝐺𝑥))
2726ralrimiva 2447 . . . . . 6 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐻‘(𝐹𝑥)) = (𝐺𝑥))
28 eluzel2 9085 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
291, 28syl 14 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
30 uzid 9094 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
3129, 30syl 14 . . . . . 6 (𝜑𝑀 ∈ (ℤ𝑀))
3225, 27, 31rspcdva 2728 . . . . 5 (𝜑 → (𝐻‘(𝐹𝑀)) = (𝐺𝑀))
33 iseqhomo.2 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
34 iseqhomo.1 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
3529, 33, 34iseq1 9936 . . . . . 6 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (𝐹𝑀))
3635fveq2d 5322 . . . . 5 (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑀)) = (𝐻‘(𝐹𝑀)))
37 iseqhomo.g . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
38 iseqhomo.qcl . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
3929, 37, 38iseq1 9936 . . . . 5 (𝜑 → (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑀) = (𝐺𝑀))
4032, 36, 393eqtr4d 2131 . . . 4 (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑀)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑀))
4140a1i 9 . . 3 (𝑀 ∈ ℤ → (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑀)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑀)))
42 oveq1 5673 . . . . . 6 ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑛) → ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐺‘(𝑛 + 1))) = ((seq𝑀(𝑄, 𝐺, 𝑆)‘𝑛)𝑄(𝐺‘(𝑛 + 1))))
43 simpr 109 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ (ℤ𝑀))
4433adantlr 462 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
4534adantlr 462 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
4643, 44, 45iseqp1 9943 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1))))
4746fveq2d 5322 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))) = (𝐻‘((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))))
48 iseqhomo.4 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)))
4948ralrimivva 2456 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)))
5049adantr 271 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀)) → ∀𝑥𝑆𝑦𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)))
5143, 44, 45iseqcl 9942 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) ∈ 𝑆)
52 fveq2 5318 . . . . . . . . . . . 12 (𝑥 = (𝑛 + 1) → (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
5352eleq1d 2157 . . . . . . . . . . 11 (𝑥 = (𝑛 + 1) → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹‘(𝑛 + 1)) ∈ 𝑆))
5433ralrimiva 2447 . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ 𝑆)
5554adantr 271 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀)) → ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ 𝑆)
56 peano2uz 9132 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝑀) → (𝑛 + 1) ∈ (ℤ𝑀))
5743, 56syl 14 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝑛 + 1) ∈ (ℤ𝑀))
5853, 55, 57rspcdva 2728 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐹‘(𝑛 + 1)) ∈ 𝑆)
59 oveq1 5673 . . . . . . . . . . . . 13 (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘𝑛) → (𝑥 + 𝑦) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦))
6059fveq2d 5322 . . . . . . . . . . . 12 (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘𝑛) → (𝐻‘(𝑥 + 𝑦)) = (𝐻‘((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦)))
61 fveq2 5318 . . . . . . . . . . . . 13 (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘𝑛) → (𝐻𝑥) = (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛)))
6261oveq1d 5681 . . . . . . . . . . . 12 (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘𝑛) → ((𝐻𝑥)𝑄(𝐻𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐻𝑦)))
6360, 62eqeq12d 2103 . . . . . . . . . . 11 (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘𝑛) → ((𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)) ↔ (𝐻‘((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐻𝑦))))
64 oveq2 5674 . . . . . . . . . . . . 13 (𝑦 = (𝐹‘(𝑛 + 1)) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1))))
6564fveq2d 5322 . . . . . . . . . . . 12 (𝑦 = (𝐹‘(𝑛 + 1)) → (𝐻‘((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦)) = (𝐻‘((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))))
66 fveq2 5318 . . . . . . . . . . . . 13 (𝑦 = (𝐹‘(𝑛 + 1)) → (𝐻𝑦) = (𝐻‘(𝐹‘(𝑛 + 1))))
6766oveq2d 5682 . . . . . . . . . . . 12 (𝑦 = (𝐹‘(𝑛 + 1)) → ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐻𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1)))))
6865, 67eqeq12d 2103 . . . . . . . . . . 11 (𝑦 = (𝐹‘(𝑛 + 1)) → ((𝐻‘((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐻𝑦)) ↔ (𝐻‘((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1))))))
6963, 68rspc2v 2735 . . . . . . . . . 10 (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) ∈ 𝑆 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝑆) → (∀𝑥𝑆𝑦𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)) → (𝐻‘((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1))))))
7051, 58, 69syl2anc 404 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀)) → (∀𝑥𝑆𝑦𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)) → (𝐻‘((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1))))))
7150, 70mpd 13 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐻‘((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1)))))
7252fveq2d 5322 . . . . . . . . . . 11 (𝑥 = (𝑛 + 1) → (𝐻‘(𝐹𝑥)) = (𝐻‘(𝐹‘(𝑛 + 1))))
73 fveq2 5318 . . . . . . . . . . 11 (𝑥 = (𝑛 + 1) → (𝐺𝑥) = (𝐺‘(𝑛 + 1)))
7472, 73eqeq12d 2103 . . . . . . . . . 10 (𝑥 = (𝑛 + 1) → ((𝐻‘(𝐹𝑥)) = (𝐺𝑥) ↔ (𝐻‘(𝐹‘(𝑛 + 1))) = (𝐺‘(𝑛 + 1))))
7527adantr 271 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → ∀𝑥 ∈ (ℤ𝑀)(𝐻‘(𝐹𝑥)) = (𝐺𝑥))
7674, 75, 57rspcdva 2728 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐻‘(𝐹‘(𝑛 + 1))) = (𝐺‘(𝑛 + 1)))
7776oveq2d 5682 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐺‘(𝑛 + 1))))
7847, 71, 773eqtrd 2125 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))) = ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐺‘(𝑛 + 1))))
7937adantlr 462 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
8038adantlr 462 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
8143, 79, 80iseqp1 9943 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → (seq𝑀(𝑄, 𝐺, 𝑆)‘(𝑛 + 1)) = ((seq𝑀(𝑄, 𝐺, 𝑆)‘𝑛)𝑄(𝐺‘(𝑛 + 1))))
8278, 81eqeq12d 2103 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺, 𝑆)‘(𝑛 + 1)) ↔ ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐺‘(𝑛 + 1))) = ((seq𝑀(𝑄, 𝐺, 𝑆)‘𝑛)𝑄(𝐺‘(𝑛 + 1)))))
8342, 82syl5ibr 155 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑛) → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺, 𝑆)‘(𝑛 + 1))))
8483expcom 115 . . . 4 (𝑛 ∈ (ℤ𝑀) → (𝜑 → ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑛) → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺, 𝑆)‘(𝑛 + 1)))))
8584a2d 26 . . 3 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑛)) → (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺, 𝑆)‘(𝑛 + 1)))))
866, 11, 16, 21, 41, 85uzind4 9137 . 2 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑁)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑁)))
871, 86mpcom 36 1 (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑁)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑁))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1290   ∈ wcel 1439  ∀wral 2360  ‘cfv 5028  (class class class)co 5666  1c1 7412   + caddc 7414  ℤcz 8811  ℤ≥cuz 9080  seqcseq4 9912 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-addcom 7506  ax-addass 7508  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-0id 7514  ax-rnegex 7515  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-ltadd 7522 This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-frec 6170  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-inn 8484  df-n0 8735  df-z 8812  df-uz 9081  df-iseq 9914 This theorem is referenced by:  iseqdistr  10006
 Copyright terms: Public domain W3C validator