ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqid GIF version

Theorem iseqid 9780
Description: Discard the first few terms of a sequence that starts with all zeroes (or whatever the identity 𝑍 is for operation +). (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
iseqid.1 ((𝜑𝑥𝑆) → (𝑍 + 𝑥) = 𝑥)
iseqid.2 (𝜑𝑍𝑆)
iseqid.3 (𝜑𝑁 ∈ (ℤ𝑀))
iseqid.4 (𝜑 → (𝐹𝑁) ∈ 𝑆)
iseqid.5 ((𝜑𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑥) = 𝑍)
iseqid.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
iseqid.cl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
iseqid (𝜑 → (seq𝑀( + , 𝐹, 𝑆) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹, 𝑆))
Distinct variable groups:   𝑥, + ,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝑥,𝑍,𝑦   𝜑,𝑥,𝑦

Proof of Theorem iseqid
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 iseqid.3 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzelz 8921 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
31, 2syl 14 . . . . 5 (𝜑𝑁 ∈ ℤ)
4 simpr 108 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑁)) → 𝑥 ∈ (ℤ𝑁))
51adantr 270 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑁)) → 𝑁 ∈ (ℤ𝑀))
6 uztrn 8928 . . . . . . 7 ((𝑥 ∈ (ℤ𝑁) ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
74, 5, 6syl2anc 403 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑁)) → 𝑥 ∈ (ℤ𝑀))
8 iseqid.f . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
97, 8syldan 276 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑁)) → (𝐹𝑥) ∈ 𝑆)
10 iseqid.cl . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
113, 9, 10iseq1 9750 . . . 4 (𝜑 → (seq𝑁( + , 𝐹, 𝑆)‘𝑁) = (𝐹𝑁))
12 iseqeq1 9741 . . . . . 6 (𝑁 = 𝑀 → seq𝑁( + , 𝐹, 𝑆) = seq𝑀( + , 𝐹, 𝑆))
1312fveq1d 5253 . . . . 5 (𝑁 = 𝑀 → (seq𝑁( + , 𝐹, 𝑆)‘𝑁) = (seq𝑀( + , 𝐹, 𝑆)‘𝑁))
1413eqeq1d 2091 . . . 4 (𝑁 = 𝑀 → ((seq𝑁( + , 𝐹, 𝑆)‘𝑁) = (𝐹𝑁) ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (𝐹𝑁)))
1511, 14syl5ibcom 153 . . 3 (𝜑 → (𝑁 = 𝑀 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (𝐹𝑁)))
16 eluzel2 8917 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
171, 16syl 14 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
1817adantr 270 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ ℤ)
19 simpr 108 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑁 ∈ (ℤ‘(𝑀 + 1)))
208adantlr 461 . . . . . 6 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
2110adantlr 461 . . . . . 6 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2218, 19, 20, 21iseqm1 9760 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = ((seq𝑀( + , 𝐹, 𝑆)‘(𝑁 − 1)) + (𝐹𝑁)))
23 oveq2 5597 . . . . . . . . . 10 (𝑥 = 𝑍 → (𝑍 + 𝑥) = (𝑍 + 𝑍))
24 id 19 . . . . . . . . . 10 (𝑥 = 𝑍𝑥 = 𝑍)
2523, 24eqeq12d 2097 . . . . . . . . 9 (𝑥 = 𝑍 → ((𝑍 + 𝑥) = 𝑥 ↔ (𝑍 + 𝑍) = 𝑍))
26 iseqid.1 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝑍 + 𝑥) = 𝑥)
2726ralrimiva 2440 . . . . . . . . 9 (𝜑 → ∀𝑥𝑆 (𝑍 + 𝑥) = 𝑥)
28 iseqid.2 . . . . . . . . 9 (𝜑𝑍𝑆)
2925, 27, 28rspcdva 2717 . . . . . . . 8 (𝜑 → (𝑍 + 𝑍) = 𝑍)
3029adantr 270 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑍 + 𝑍) = 𝑍)
31 eluzp1m1 8935 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
3217, 31sylan 277 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
33 iseqid.5 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑥) = 𝑍)
3433adantlr 461 . . . . . . 7 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑥) = 𝑍)
3528adantr 270 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑍𝑆)
3630, 32, 34, 35, 20, 21iseqid3s 9779 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑁 − 1)) = 𝑍)
3736oveq1d 5604 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((seq𝑀( + , 𝐹, 𝑆)‘(𝑁 − 1)) + (𝐹𝑁)) = (𝑍 + (𝐹𝑁)))
38 oveq2 5597 . . . . . . 7 (𝑥 = (𝐹𝑁) → (𝑍 + 𝑥) = (𝑍 + (𝐹𝑁)))
39 id 19 . . . . . . 7 (𝑥 = (𝐹𝑁) → 𝑥 = (𝐹𝑁))
4038, 39eqeq12d 2097 . . . . . 6 (𝑥 = (𝐹𝑁) → ((𝑍 + 𝑥) = 𝑥 ↔ (𝑍 + (𝐹𝑁)) = (𝐹𝑁)))
4127adantr 270 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ∀𝑥𝑆 (𝑍 + 𝑥) = 𝑥)
42 iseqid.4 . . . . . . 7 (𝜑 → (𝐹𝑁) ∈ 𝑆)
4342adantr 270 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑁) ∈ 𝑆)
4440, 41, 43rspcdva 2717 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑍 + (𝐹𝑁)) = (𝐹𝑁))
4522, 37, 443eqtrd 2119 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (𝐹𝑁))
4645ex 113 . . 3 (𝜑 → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (𝐹𝑁)))
47 uzp1 8945 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
481, 47syl 14 . . 3 (𝜑 → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
4915, 46, 48mpjaod 671 . 2 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (𝐹𝑁))
50 eqidd 2084 . 2 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝐹𝑘) = (𝐹𝑘))
511, 49, 8, 9, 10, 50iseqfeq2 9762 1 (𝜑 → (seq𝑀( + , 𝐹, 𝑆) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹, 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wo 662   = wceq 1285  wcel 1434  wral 2353  cres 4401  cfv 4967  (class class class)co 5589  1c1 7252   + caddc 7254  cmin 7554  cz 8644  cuz 8912  ...cfz 9317  seqcseq 9738
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-iinf 4365  ax-cnex 7337  ax-resscn 7338  ax-1cn 7339  ax-1re 7340  ax-icn 7341  ax-addcl 7342  ax-addrcl 7343  ax-mulcl 7344  ax-addcom 7346  ax-addass 7348  ax-distr 7350  ax-i2m1 7351  ax-0lt1 7352  ax-0id 7354  ax-rnegex 7355  ax-cnre 7357  ax-pre-ltirr 7358  ax-pre-ltwlin 7359  ax-pre-lttrn 7360  ax-pre-ltadd 7362
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4083  df-iord 4156  df-on 4158  df-ilim 4159  df-suc 4161  df-iom 4368  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-dm 4409  df-rn 4410  df-res 4411  df-ima 4412  df-iota 4932  df-fun 4969  df-fn 4970  df-f 4971  df-f1 4972  df-fo 4973  df-f1o 4974  df-fv 4975  df-riota 5545  df-ov 5592  df-oprab 5593  df-mpt2 5594  df-1st 5844  df-2nd 5845  df-recs 6000  df-frec 6086  df-pnf 7425  df-mnf 7426  df-xr 7427  df-ltxr 7428  df-le 7429  df-sub 7556  df-neg 7557  df-inn 8315  df-n0 8564  df-z 8645  df-uz 8913  df-fz 9318  df-fzo 9442  df-iseq 9739
This theorem is referenced by:  isumrblem  10571
  Copyright terms: Public domain W3C validator