Step | Hyp | Ref
| Expression |
1 | | iseqid2.3 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐾)) |
2 | | eluzfz2 9341 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝐾) → 𝑁 ∈ (𝐾...𝑁)) |
3 | 1, 2 | syl 14 |
. 2
⊢ (𝜑 → 𝑁 ∈ (𝐾...𝑁)) |
4 | | eleq1 2145 |
. . . . . 6
⊢ (𝑥 = 𝐾 → (𝑥 ∈ (𝐾...𝑁) ↔ 𝐾 ∈ (𝐾...𝑁))) |
5 | | fveq2 5253 |
. . . . . . 7
⊢ (𝑥 = 𝐾 → (seq𝑀( + , 𝐹, 𝑆)‘𝑥) = (seq𝑀( + , 𝐹, 𝑆)‘𝐾)) |
6 | 5 | eqeq2d 2094 |
. . . . . 6
⊢ (𝑥 = 𝐾 → ((seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝑥) ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝐾))) |
7 | 4, 6 | imbi12d 232 |
. . . . 5
⊢ (𝑥 = 𝐾 → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝑥)) ↔ (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝐾)))) |
8 | 7 | imbi2d 228 |
. . . 4
⊢ (𝑥 = 𝐾 → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝑥))) ↔ (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝐾))))) |
9 | | eleq1 2145 |
. . . . . 6
⊢ (𝑥 = 𝑛 → (𝑥 ∈ (𝐾...𝑁) ↔ 𝑛 ∈ (𝐾...𝑁))) |
10 | | fveq2 5253 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → (seq𝑀( + , 𝐹, 𝑆)‘𝑥) = (seq𝑀( + , 𝐹, 𝑆)‘𝑛)) |
11 | 10 | eqeq2d 2094 |
. . . . . 6
⊢ (𝑥 = 𝑛 → ((seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝑥) ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝑛))) |
12 | 9, 11 | imbi12d 232 |
. . . . 5
⊢ (𝑥 = 𝑛 → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝑥)) ↔ (𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝑛)))) |
13 | 12 | imbi2d 228 |
. . . 4
⊢ (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝑥))) ↔ (𝜑 → (𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝑛))))) |
14 | | eleq1 2145 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → (𝑥 ∈ (𝐾...𝑁) ↔ (𝑛 + 1) ∈ (𝐾...𝑁))) |
15 | | fveq2 5253 |
. . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → (seq𝑀( + , 𝐹, 𝑆)‘𝑥) = (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))) |
16 | 15 | eqeq2d 2094 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → ((seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝑥) ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)))) |
17 | 14, 16 | imbi12d 232 |
. . . . 5
⊢ (𝑥 = (𝑛 + 1) → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝑥)) ↔ ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))))) |
18 | 17 | imbi2d 228 |
. . . 4
⊢ (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝑥))) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)))))) |
19 | | eleq1 2145 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (𝑥 ∈ (𝐾...𝑁) ↔ 𝑁 ∈ (𝐾...𝑁))) |
20 | | fveq2 5253 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (seq𝑀( + , 𝐹, 𝑆)‘𝑥) = (seq𝑀( + , 𝐹, 𝑆)‘𝑁)) |
21 | 20 | eqeq2d 2094 |
. . . . . 6
⊢ (𝑥 = 𝑁 → ((seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝑥) ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝑁))) |
22 | 19, 21 | imbi12d 232 |
. . . . 5
⊢ (𝑥 = 𝑁 → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝑥)) ↔ (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝑁)))) |
23 | 22 | imbi2d 228 |
. . . 4
⊢ (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝑁))))) |
24 | | eqidd 2084 |
. . . . 5
⊢ (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝐾)) |
25 | 24 | 2a1i 27 |
. . . 4
⊢ (𝐾 ∈ ℤ → (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝐾)))) |
26 | | peano2fzr 9346 |
. . . . . . . . . 10
⊢ ((𝑛 ∈
(ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁)) → 𝑛 ∈ (𝐾...𝑁)) |
27 | 26 | adantl 271 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝑛 ∈ (𝐾...𝑁)) |
28 | 27 | expr 367 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → 𝑛 ∈ (𝐾...𝑁))) |
29 | 28 | imim1d 74 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → ((𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝑛)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝑛)))) |
30 | | oveq1 5598 |
. . . . . . . . . 10
⊢
((seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝑛) → ((seq𝑀( + , 𝐹, 𝑆)‘𝐾) + (𝐹‘(𝑛 + 1))) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
31 | | fveq2 5253 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑛 + 1) → (𝐹‘𝑥) = (𝐹‘(𝑛 + 1))) |
32 | 31 | eqeq1d 2091 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑛 + 1) → ((𝐹‘𝑥) = 𝑍 ↔ (𝐹‘(𝑛 + 1)) = 𝑍)) |
33 | | iseqid2.5 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → (𝐹‘𝑥) = 𝑍) |
34 | 33 | ralrimiva 2440 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑥 ∈ ((𝐾 + 1)...𝑁)(𝐹‘𝑥) = 𝑍) |
35 | 34 | adantr 270 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ∀𝑥 ∈ ((𝐾 + 1)...𝑁)(𝐹‘𝑥) = 𝑍) |
36 | | eluzp1p1 8939 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈
(ℤ≥‘𝐾) → (𝑛 + 1) ∈
(ℤ≥‘(𝐾 + 1))) |
37 | 36 | ad2antrl 474 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (𝑛 + 1) ∈
(ℤ≥‘(𝐾 + 1))) |
38 | | elfzuz3 9332 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 + 1) ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ≥‘(𝑛 + 1))) |
39 | 38 | ad2antll 475 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝑁 ∈ (ℤ≥‘(𝑛 + 1))) |
40 | | elfzuzb 9329 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 + 1) ∈ ((𝐾 + 1)...𝑁) ↔ ((𝑛 + 1) ∈
(ℤ≥‘(𝐾 + 1)) ∧ 𝑁 ∈ (ℤ≥‘(𝑛 + 1)))) |
41 | 37, 39, 40 | sylanbrc 408 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (𝑛 + 1) ∈ ((𝐾 + 1)...𝑁)) |
42 | 32, 35, 41 | rspcdva 2717 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (𝐹‘(𝑛 + 1)) = 𝑍) |
43 | 42 | oveq2d 5607 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹, 𝑆)‘𝐾) + (𝐹‘(𝑛 + 1))) = ((seq𝑀( + , 𝐹, 𝑆)‘𝐾) + 𝑍)) |
44 | | oveq1 5598 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘𝐾) → (𝑥 + 𝑍) = ((seq𝑀( + , 𝐹, 𝑆)‘𝐾) + 𝑍)) |
45 | | id 19 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘𝐾) → 𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘𝐾)) |
46 | 44, 45 | eqeq12d 2097 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘𝐾) → ((𝑥 + 𝑍) = 𝑥 ↔ ((seq𝑀( + , 𝐹, 𝑆)‘𝐾) + 𝑍) = (seq𝑀( + , 𝐹, 𝑆)‘𝐾))) |
47 | | iseqid2.1 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥 + 𝑍) = 𝑥) |
48 | 47 | ralrimiva 2440 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (𝑥 + 𝑍) = 𝑥) |
49 | | iseqid2.4 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) ∈ 𝑆) |
50 | 46, 48, 49 | rspcdva 2717 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((seq𝑀( + , 𝐹, 𝑆)‘𝐾) + 𝑍) = (seq𝑀( + , 𝐹, 𝑆)‘𝐾)) |
51 | 50 | adantr 270 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹, 𝑆)‘𝐾) + 𝑍) = (seq𝑀( + , 𝐹, 𝑆)‘𝐾)) |
52 | 43, 51 | eqtr2d 2116 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = ((seq𝑀( + , 𝐹, 𝑆)‘𝐾) + (𝐹‘(𝑛 + 1)))) |
53 | | simprl 498 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝑛 ∈ (ℤ≥‘𝐾)) |
54 | | iseqid2.2 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) |
55 | 54 | adantr 270 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝐾 ∈ (ℤ≥‘𝑀)) |
56 | | uztrn 8930 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈
(ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑀)) → 𝑛 ∈ (ℤ≥‘𝑀)) |
57 | 53, 55, 56 | syl2anc 403 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝑛 ∈ (ℤ≥‘𝑀)) |
58 | | iseqid2.f |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
59 | 58 | adantlr 461 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
60 | | iseqid2.cl |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
61 | 60 | adantlr 461 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
62 | 57, 59, 61 | iseqp1 9757 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
63 | 52, 62 | eqeq12d 2097 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) ↔ ((seq𝑀( + , 𝐹, 𝑆)‘𝐾) + (𝐹‘(𝑛 + 1))) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1))))) |
64 | 30, 63 | syl5ibr 154 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝑛) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)))) |
65 | 64 | expr 367 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → ((seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝑛) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))))) |
66 | 65 | a2d 26 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → (((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝑛)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))))) |
67 | 29, 66 | syld 44 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → ((𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝑛)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))))) |
68 | 67 | expcom 114 |
. . . . 5
⊢ (𝑛 ∈
(ℤ≥‘𝐾) → (𝜑 → ((𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝑛)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)))))) |
69 | 68 | a2d 26 |
. . . 4
⊢ (𝑛 ∈
(ℤ≥‘𝐾) → ((𝜑 → (𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝑛))) → (𝜑 → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)))))) |
70 | 8, 13, 18, 23, 25, 69 | uzind4 8971 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝐾) → (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝑁)))) |
71 | 1, 70 | mpcom 36 |
. 2
⊢ (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝑁))) |
72 | 3, 71 | mpd 13 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝑀( + , 𝐹, 𝑆)‘𝑁)) |