![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iseqp1 | GIF version |
Description: Value of the sequence builder function at a successor. (Contributed by Jim Kingdon, 31-May-2020.) |
Ref | Expression |
---|---|
iseqp1.m | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
iseqp1.f | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
iseqp1.pl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
Ref | Expression |
---|---|
iseqp1 | ⊢ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseqp1.m | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
2 | eluzel2 8918 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
4 | eqid 2083 | . . . 4 ⊢ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝑀) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝑀) | |
5 | fveq2 5252 | . . . . . 6 ⊢ (𝑥 = 𝑀 → (𝐹‘𝑥) = (𝐹‘𝑀)) | |
6 | 5 | eleq1d 2151 | . . . . 5 ⊢ (𝑥 = 𝑀 → ((𝐹‘𝑥) ∈ 𝑆 ↔ (𝐹‘𝑀) ∈ 𝑆)) |
7 | iseqp1.f | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) | |
8 | 7 | ralrimiva 2440 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐹‘𝑥) ∈ 𝑆) |
9 | uzid 8927 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
10 | 3, 9 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
11 | 6, 8, 10 | rspcdva 2717 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝑆) |
12 | iseqp1.pl | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
13 | 7, 12 | iseqovex 9747 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆) |
14 | eqid 2083 | . . . 4 ⊢ frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) | |
15 | 14, 7, 12 | iseqval 9748 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹, 𝑆) = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉)) |
16 | 3, 4, 11, 13, 14, 15 | frecuzrdgsuc 9709 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹, 𝑆)‘𝑁))) |
17 | 1, 16 | mpdan 412 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹, 𝑆)‘𝑁))) |
18 | 1, 7, 12 | iseqcl 9755 | . . 3 ⊢ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) ∈ 𝑆) |
19 | fveq2 5252 | . . . . . 6 ⊢ (𝑥 = (𝑁 + 1) → (𝐹‘𝑥) = (𝐹‘(𝑁 + 1))) | |
20 | 19 | eleq1d 2151 | . . . . 5 ⊢ (𝑥 = (𝑁 + 1) → ((𝐹‘𝑥) ∈ 𝑆 ↔ (𝐹‘(𝑁 + 1)) ∈ 𝑆)) |
21 | peano2uz 8965 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) | |
22 | 1, 21 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
23 | 20, 8, 22 | rspcdva 2717 | . . . 4 ⊢ (𝜑 → (𝐹‘(𝑁 + 1)) ∈ 𝑆) |
24 | 12, 18, 23 | caovcld 5732 | . . 3 ⊢ (𝜑 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑁) + (𝐹‘(𝑁 + 1))) ∈ 𝑆) |
25 | oveq1 5597 | . . . . . 6 ⊢ (𝑧 = 𝑁 → (𝑧 + 1) = (𝑁 + 1)) | |
26 | 25 | fveq2d 5256 | . . . . 5 ⊢ (𝑧 = 𝑁 → (𝐹‘(𝑧 + 1)) = (𝐹‘(𝑁 + 1))) |
27 | 26 | oveq2d 5606 | . . . 4 ⊢ (𝑧 = 𝑁 → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘(𝑁 + 1)))) |
28 | oveq1 5597 | . . . 4 ⊢ (𝑤 = (seq𝑀( + , 𝐹, 𝑆)‘𝑁) → (𝑤 + (𝐹‘(𝑁 + 1))) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑁) + (𝐹‘(𝑁 + 1)))) | |
29 | eqid 2083 | . . . 4 ⊢ (𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) | |
30 | 27, 28, 29 | ovmpt2g 5713 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ (seq𝑀( + , 𝐹, 𝑆)‘𝑁) ∈ 𝑆 ∧ ((seq𝑀( + , 𝐹, 𝑆)‘𝑁) + (𝐹‘(𝑁 + 1))) ∈ 𝑆) → (𝑁(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹, 𝑆)‘𝑁)) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
31 | 1, 18, 24, 30 | syl3anc 1170 | . 2 ⊢ (𝜑 → (𝑁(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹, 𝑆)‘𝑁)) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
32 | 17, 31 | eqtrd 2115 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1285 ∈ wcel 1434 〈cop 3425 ↦ cmpt 3865 ‘cfv 4968 (class class class)co 5590 ↦ cmpt2 5592 freccfrec 6086 1c1 7253 + caddc 7255 ℤcz 8645 ℤ≥cuz 8913 seqcseq 9739 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3919 ax-sep 3922 ax-nul 3930 ax-pow 3974 ax-pr 3999 ax-un 4223 ax-setind 4315 ax-iinf 4365 ax-cnex 7338 ax-resscn 7339 ax-1cn 7340 ax-1re 7341 ax-icn 7342 ax-addcl 7343 ax-addrcl 7344 ax-mulcl 7345 ax-addcom 7347 ax-addass 7349 ax-distr 7351 ax-i2m1 7352 ax-0lt1 7353 ax-0id 7355 ax-rnegex 7356 ax-cnre 7358 ax-pre-ltirr 7359 ax-pre-ltwlin 7360 ax-pre-lttrn 7361 ax-pre-ltadd 7363 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2614 df-sbc 2827 df-csb 2920 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-nul 3270 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-int 3663 df-iun 3706 df-br 3812 df-opab 3866 df-mpt 3867 df-tr 3902 df-id 4083 df-iord 4156 df-on 4158 df-ilim 4159 df-suc 4161 df-iom 4368 df-xp 4406 df-rel 4407 df-cnv 4408 df-co 4409 df-dm 4410 df-rn 4411 df-res 4412 df-ima 4413 df-iota 4933 df-fun 4970 df-fn 4971 df-f 4972 df-f1 4973 df-fo 4974 df-f1o 4975 df-fv 4976 df-riota 5546 df-ov 5593 df-oprab 5594 df-mpt2 5595 df-1st 5845 df-2nd 5846 df-recs 6001 df-frec 6087 df-pnf 7426 df-mnf 7427 df-xr 7428 df-ltxr 7429 df-le 7430 df-sub 7557 df-neg 7558 df-inn 8316 df-n0 8565 df-z 8646 df-uz 8914 df-iseq 9740 |
This theorem is referenced by: iseqoveq 9758 iseqss 9759 iseqsst 9760 iseqm1 9761 iseqfveq2 9762 iseqshft2 9766 isermono 9771 iseqsplit 9772 iseqcaopr3 9774 iseqid3s 9780 iseqid2 9782 iseqhomo 9783 iseqz 9784 expivallem 9792 expp1 9798 facp1 9972 resqrexlemfp1 10268 climserile 10556 ialgrp1 10807 |
Copyright terms: Public domain | W3C validator |