Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqshft2 GIF version

Theorem iseqshft2 9961
 Description: Shifting the index set of a sequence. New proofs should use seq3shft2 9962 instead (together with iseqsst 9949 or iseqseq3 9965 if need be). (Contributed by Jim Kingdon, 15-Aug-2021.) (New usage is discouraged.)
Hypotheses
Ref Expression
iseqshft2.1 (𝜑𝑁 ∈ (ℤ𝑀))
iseqshft2.2 (𝜑𝐾 ∈ ℤ)
iseqshft2.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)))
iseqshft2.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
iseqshft2.g ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝐺𝑥) ∈ 𝑆)
iseqshft2.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
iseqshft2 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾)))
Distinct variable groups:   𝑥, + ,𝑦   𝑘,𝐹,𝑥   𝑦,𝐹   𝑘,𝐺,𝑥   𝑦,𝐺   𝑘,𝐾,𝑥   𝑦,𝐾   𝑘,𝑀,𝑥   𝑦,𝑀   𝑘,𝑁,𝑥   𝑦,𝑁   𝑥,𝑆,𝑦   𝜑,𝑘,𝑥   𝜑,𝑦
Allowed substitution hints:   + (𝑘)   𝑆(𝑘)

Proof of Theorem iseqshft2
Dummy variables 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqshft2.1 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 9509 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 eleq1 2151 . . . . . 6 (𝑤 = 𝑀 → (𝑤 ∈ (𝑀...𝑁) ↔ 𝑀 ∈ (𝑀...𝑁)))
5 fveq2 5320 . . . . . . 7 (𝑤 = 𝑀 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑀))
6 oveq1 5675 . . . . . . . 8 (𝑤 = 𝑀 → (𝑤 + 𝐾) = (𝑀 + 𝐾))
76fveq2d 5324 . . . . . . 7 (𝑤 = 𝑀 → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑀 + 𝐾)))
85, 7eqeq12d 2103 . . . . . 6 (𝑤 = 𝑀 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑀 + 𝐾))))
94, 8imbi12d 233 . . . . 5 (𝑤 = 𝑀 → ((𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾))) ↔ (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑀 + 𝐾)))))
109imbi2d 229 . . . 4 (𝑤 = 𝑀 → ((𝜑 → (𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)))) ↔ (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑀 + 𝐾))))))
11 eleq1 2151 . . . . . 6 (𝑤 = 𝑛 → (𝑤 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁)))
12 fveq2 5320 . . . . . . 7 (𝑤 = 𝑛 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑛))
13 oveq1 5675 . . . . . . . 8 (𝑤 = 𝑛 → (𝑤 + 𝐾) = (𝑛 + 𝐾))
1413fveq2d 5324 . . . . . . 7 (𝑤 = 𝑛 → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)))
1512, 14eqeq12d 2103 . . . . . 6 (𝑤 = 𝑛 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾))))
1611, 15imbi12d 233 . . . . 5 (𝑤 = 𝑛 → ((𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾))) ↔ (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)))))
1716imbi2d 229 . . . 4 (𝑤 = 𝑛 → ((𝜑 → (𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)))) ↔ (𝜑 → (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾))))))
18 eleq1 2151 . . . . . 6 (𝑤 = (𝑛 + 1) → (𝑤 ∈ (𝑀...𝑁) ↔ (𝑛 + 1) ∈ (𝑀...𝑁)))
19 fveq2 5320 . . . . . . 7 (𝑤 = (𝑛 + 1) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)))
20 oveq1 5675 . . . . . . . 8 (𝑤 = (𝑛 + 1) → (𝑤 + 𝐾) = ((𝑛 + 1) + 𝐾))
2120fveq2d 5324 . . . . . . 7 (𝑤 = (𝑛 + 1) → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)))
2219, 21eqeq12d 2103 . . . . . 6 (𝑤 = (𝑛 + 1) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) ↔ (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾))))
2318, 22imbi12d 233 . . . . 5 (𝑤 = (𝑛 + 1) → ((𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾))) ↔ ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)))))
2423imbi2d 229 . . . 4 (𝑤 = (𝑛 + 1) → ((𝜑 → (𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)))) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾))))))
25 eleq1 2151 . . . . . 6 (𝑤 = 𝑁 → (𝑤 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁)))
26 fveq2 5320 . . . . . . 7 (𝑤 = 𝑁 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑁))
27 oveq1 5675 . . . . . . . 8 (𝑤 = 𝑁 → (𝑤 + 𝐾) = (𝑁 + 𝐾))
2827fveq2d 5324 . . . . . . 7 (𝑤 = 𝑁 → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾)))
2926, 28eqeq12d 2103 . . . . . 6 (𝑤 = 𝑁 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾))))
3025, 29imbi12d 233 . . . . 5 (𝑤 = 𝑁 → ((𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾))) ↔ (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾)))))
3130imbi2d 229 . . . 4 (𝑤 = 𝑁 → ((𝜑 → (𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)))) ↔ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾))))))
32 fveq2 5320 . . . . . . . 8 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
33 oveq1 5675 . . . . . . . . 9 (𝑘 = 𝑀 → (𝑘 + 𝐾) = (𝑀 + 𝐾))
3433fveq2d 5324 . . . . . . . 8 (𝑘 = 𝑀 → (𝐺‘(𝑘 + 𝐾)) = (𝐺‘(𝑀 + 𝐾)))
3532, 34eqeq12d 2103 . . . . . . 7 (𝑘 = 𝑀 → ((𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)) ↔ (𝐹𝑀) = (𝐺‘(𝑀 + 𝐾))))
36 iseqshft2.3 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)))
3736ralrimiva 2447 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)))
38 eluzfz1 9508 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
391, 38syl 14 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝑁))
4035, 37, 39rspcdva 2730 . . . . . 6 (𝜑 → (𝐹𝑀) = (𝐺‘(𝑀 + 𝐾)))
41 eluzel2 9087 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
421, 41syl 14 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
43 iseqshft2.f . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
44 iseqshft2.pl . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
4542, 43, 44iseq1 9938 . . . . . 6 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (𝐹𝑀))
46 iseqshft2.2 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
4742, 46zaddcld 8935 . . . . . . 7 (𝜑 → (𝑀 + 𝐾) ∈ ℤ)
48 iseqshft2.g . . . . . . 7 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝐺𝑥) ∈ 𝑆)
4947, 48, 44iseq1 9938 . . . . . 6 (𝜑 → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑀 + 𝐾)) = (𝐺‘(𝑀 + 𝐾)))
5040, 45, 493eqtr4d 2131 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑀 + 𝐾)))
5150a1i13 24 . . . 4 (𝑀 ∈ ℤ → (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑀 + 𝐾)))))
52 peano2fzr 9514 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (𝑀...𝑁))
5352adantl 272 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (𝑀...𝑁))
5453expr 368 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑛 ∈ (𝑀...𝑁)))
5554imim1d 75 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)))))
56 oveq1 5675 . . . . . . . . . 10 ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1))) = ((seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1))))
57 simprl 499 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (ℤ𝑀))
5843adantlr 462 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
5944adantlr 462 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
6057, 58, 59iseqp1 9945 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1))))
6146adantr 271 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝐾 ∈ ℤ)
62 eluzadd 9110 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑛 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
6357, 61, 62syl2anc 404 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
6448adantlr 462 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) ∧ 𝑥 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝐺𝑥) ∈ 𝑆)
6563, 64, 59iseqp1 9945 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 𝐾) + 1)) = ((seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) + (𝐺‘((𝑛 + 𝐾) + 1))))
66 eluzelz 9091 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
6757, 66syl 14 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ ℤ)
68 zcn 8818 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
69 zcn 8818 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
70 ax-1cn 7501 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
71 add32 7704 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑛 + 1) + 𝐾) = ((𝑛 + 𝐾) + 1))
7270, 71mp3an2 1262 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑛 + 1) + 𝐾) = ((𝑛 + 𝐾) + 1))
7368, 69, 72syl2an 284 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑛 + 1) + 𝐾) = ((𝑛 + 𝐾) + 1))
7467, 61, 73syl2anc 404 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((𝑛 + 1) + 𝐾) = ((𝑛 + 𝐾) + 1))
7574fveq2d 5324 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 𝐾) + 1)))
76 fveq2 5320 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
77 oveq1 5675 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑛 + 1) → (𝑘 + 𝐾) = ((𝑛 + 1) + 𝐾))
7877fveq2d 5324 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑛 + 1) → (𝐺‘(𝑘 + 𝐾)) = (𝐺‘((𝑛 + 1) + 𝐾)))
7976, 78eqeq12d 2103 . . . . . . . . . . . . . . 15 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)) ↔ (𝐹‘(𝑛 + 1)) = (𝐺‘((𝑛 + 1) + 𝐾))))
8037adantr 271 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)))
81 simprr 500 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 1) ∈ (𝑀...𝑁))
8279, 80, 81rspcdva 2730 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘(𝑛 + 1)) = (𝐺‘((𝑛 + 1) + 𝐾)))
8374fveq2d 5324 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐺‘((𝑛 + 1) + 𝐾)) = (𝐺‘((𝑛 + 𝐾) + 1)))
8482, 83eqtrd 2121 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘(𝑛 + 1)) = (𝐺‘((𝑛 + 𝐾) + 1)))
8584oveq2d 5684 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1))) = ((seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) + (𝐺‘((𝑛 + 𝐾) + 1))))
8665, 75, 853eqtr4d 2131 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)) = ((seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1))))
8760, 86eqeq12d 2103 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)) ↔ ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1))) = ((seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1)))))
8856, 87syl5ibr 155 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾))))
8988expr 368 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)))))
9089a2d 26 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → (((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)))))
9155, 90syld 45 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)))))
9291expcom 115 . . . . 5 (𝑛 ∈ (ℤ𝑀) → (𝜑 → ((𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾))))))
9392a2d 26 . . . 4 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)))) → (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾))))))
9410, 17, 24, 31, 51, 93uzind4 9139 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾)))))
951, 94mpcom 36 . 2 (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾))))
963, 95mpd 13 1 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1290   ∈ wcel 1439  ∀wral 2360  ‘cfv 5030  (class class class)co 5668  ℂcc 7411  1c1 7414   + caddc 7416  ℤcz 8813  ℤ≥cuz 9082  ...cfz 9487  seqcseq4 9914 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3962  ax-sep 3965  ax-nul 3973  ax-pow 4017  ax-pr 4047  ax-un 4271  ax-setind 4368  ax-iinf 4418  ax-cnex 7499  ax-resscn 7500  ax-1cn 7501  ax-1re 7502  ax-icn 7503  ax-addcl 7504  ax-addrcl 7505  ax-mulcl 7506  ax-addcom 7508  ax-addass 7510  ax-distr 7512  ax-i2m1 7513  ax-0lt1 7514  ax-0id 7516  ax-rnegex 7517  ax-cnre 7519  ax-pre-ltirr 7520  ax-pre-ltwlin 7521  ax-pre-lttrn 7522  ax-pre-ltadd 7524 This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2624  df-sbc 2844  df-csb 2937  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-nul 3290  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-int 3697  df-iun 3740  df-br 3854  df-opab 3908  df-mpt 3909  df-tr 3945  df-id 4131  df-iord 4204  df-on 4206  df-ilim 4207  df-suc 4209  df-iom 4421  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-rn 4465  df-res 4466  df-ima 4467  df-iota 4995  df-fun 5032  df-fn 5033  df-f 5034  df-f1 5035  df-fo 5036  df-f1o 5037  df-fv 5038  df-riota 5624  df-ov 5671  df-oprab 5672  df-mpt2 5673  df-1st 5927  df-2nd 5928  df-recs 6086  df-frec 6172  df-pnf 7587  df-mnf 7588  df-xr 7589  df-ltxr 7590  df-le 7591  df-sub 7718  df-neg 7719  df-inn 8486  df-n0 8737  df-z 8814  df-uz 9083  df-fz 9488  df-iseq 9916 This theorem is referenced by:  seq3shft2  9962
 Copyright terms: Public domain W3C validator