Step | Hyp | Ref
| Expression |
1 | | iseqshft2.1 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
2 | | eluzfz2 9509 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
3 | 1, 2 | syl 14 |
. 2
⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
4 | | eleq1 2151 |
. . . . . 6
⊢ (𝑤 = 𝑀 → (𝑤 ∈ (𝑀...𝑁) ↔ 𝑀 ∈ (𝑀...𝑁))) |
5 | | fveq2 5320 |
. . . . . . 7
⊢ (𝑤 = 𝑀 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑀)) |
6 | | oveq1 5675 |
. . . . . . . 8
⊢ (𝑤 = 𝑀 → (𝑤 + 𝐾) = (𝑀 + 𝐾)) |
7 | 6 | fveq2d 5324 |
. . . . . . 7
⊢ (𝑤 = 𝑀 → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑀 + 𝐾))) |
8 | 5, 7 | eqeq12d 2103 |
. . . . . 6
⊢ (𝑤 = 𝑀 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑀 + 𝐾)))) |
9 | 4, 8 | imbi12d 233 |
. . . . 5
⊢ (𝑤 = 𝑀 → ((𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾))) ↔ (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑀 + 𝐾))))) |
10 | 9 | imbi2d 229 |
. . . 4
⊢ (𝑤 = 𝑀 → ((𝜑 → (𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)))) ↔ (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑀 + 𝐾)))))) |
11 | | eleq1 2151 |
. . . . . 6
⊢ (𝑤 = 𝑛 → (𝑤 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁))) |
12 | | fveq2 5320 |
. . . . . . 7
⊢ (𝑤 = 𝑛 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑛)) |
13 | | oveq1 5675 |
. . . . . . . 8
⊢ (𝑤 = 𝑛 → (𝑤 + 𝐾) = (𝑛 + 𝐾)) |
14 | 13 | fveq2d 5324 |
. . . . . . 7
⊢ (𝑤 = 𝑛 → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾))) |
15 | 12, 14 | eqeq12d 2103 |
. . . . . 6
⊢ (𝑤 = 𝑛 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)))) |
16 | 11, 15 | imbi12d 233 |
. . . . 5
⊢ (𝑤 = 𝑛 → ((𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾))) ↔ (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾))))) |
17 | 16 | imbi2d 229 |
. . . 4
⊢ (𝑤 = 𝑛 → ((𝜑 → (𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)))) ↔ (𝜑 → (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)))))) |
18 | | eleq1 2151 |
. . . . . 6
⊢ (𝑤 = (𝑛 + 1) → (𝑤 ∈ (𝑀...𝑁) ↔ (𝑛 + 1) ∈ (𝑀...𝑁))) |
19 | | fveq2 5320 |
. . . . . . 7
⊢ (𝑤 = (𝑛 + 1) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))) |
20 | | oveq1 5675 |
. . . . . . . 8
⊢ (𝑤 = (𝑛 + 1) → (𝑤 + 𝐾) = ((𝑛 + 1) + 𝐾)) |
21 | 20 | fveq2d 5324 |
. . . . . . 7
⊢ (𝑤 = (𝑛 + 1) → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾))) |
22 | 19, 21 | eqeq12d 2103 |
. . . . . 6
⊢ (𝑤 = (𝑛 + 1) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) ↔ (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)))) |
23 | 18, 22 | imbi12d 233 |
. . . . 5
⊢ (𝑤 = (𝑛 + 1) → ((𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾))) ↔ ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾))))) |
24 | 23 | imbi2d 229 |
. . . 4
⊢ (𝑤 = (𝑛 + 1) → ((𝜑 → (𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)))) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)))))) |
25 | | eleq1 2151 |
. . . . . 6
⊢ (𝑤 = 𝑁 → (𝑤 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁))) |
26 | | fveq2 5320 |
. . . . . . 7
⊢ (𝑤 = 𝑁 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑁)) |
27 | | oveq1 5675 |
. . . . . . . 8
⊢ (𝑤 = 𝑁 → (𝑤 + 𝐾) = (𝑁 + 𝐾)) |
28 | 27 | fveq2d 5324 |
. . . . . . 7
⊢ (𝑤 = 𝑁 → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾))) |
29 | 26, 28 | eqeq12d 2103 |
. . . . . 6
⊢ (𝑤 = 𝑁 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾)))) |
30 | 25, 29 | imbi12d 233 |
. . . . 5
⊢ (𝑤 = 𝑁 → ((𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾))) ↔ (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾))))) |
31 | 30 | imbi2d 229 |
. . . 4
⊢ (𝑤 = 𝑁 → ((𝜑 → (𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)))) ↔ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾)))))) |
32 | | fveq2 5320 |
. . . . . . . 8
⊢ (𝑘 = 𝑀 → (𝐹‘𝑘) = (𝐹‘𝑀)) |
33 | | oveq1 5675 |
. . . . . . . . 9
⊢ (𝑘 = 𝑀 → (𝑘 + 𝐾) = (𝑀 + 𝐾)) |
34 | 33 | fveq2d 5324 |
. . . . . . . 8
⊢ (𝑘 = 𝑀 → (𝐺‘(𝑘 + 𝐾)) = (𝐺‘(𝑀 + 𝐾))) |
35 | 32, 34 | eqeq12d 2103 |
. . . . . . 7
⊢ (𝑘 = 𝑀 → ((𝐹‘𝑘) = (𝐺‘(𝑘 + 𝐾)) ↔ (𝐹‘𝑀) = (𝐺‘(𝑀 + 𝐾)))) |
36 | | iseqshft2.3 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) = (𝐺‘(𝑘 + 𝐾))) |
37 | 36 | ralrimiva 2447 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) = (𝐺‘(𝑘 + 𝐾))) |
38 | | eluzfz1 9508 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
39 | 1, 38 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
40 | 35, 37, 39 | rspcdva 2730 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝑀) = (𝐺‘(𝑀 + 𝐾))) |
41 | | eluzel2 9087 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
42 | 1, 41 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
43 | | iseqshft2.f |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
44 | | iseqshft2.pl |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
45 | 42, 43, 44 | iseq1 9938 |
. . . . . 6
⊢ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (𝐹‘𝑀)) |
46 | | iseqshft2.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ ℤ) |
47 | 42, 46 | zaddcld 8935 |
. . . . . . 7
⊢ (𝜑 → (𝑀 + 𝐾) ∈ ℤ) |
48 | | iseqshft2.g |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝐺‘𝑥) ∈ 𝑆) |
49 | 47, 48, 44 | iseq1 9938 |
. . . . . 6
⊢ (𝜑 → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑀 + 𝐾)) = (𝐺‘(𝑀 + 𝐾))) |
50 | 40, 45, 49 | 3eqtr4d 2131 |
. . . . 5
⊢ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑀 + 𝐾))) |
51 | 50 | a1i13 24 |
. . . 4
⊢ (𝑀 ∈ ℤ → (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑀 + 𝐾))))) |
52 | | peano2fzr 9514 |
. . . . . . . . . 10
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (𝑀...𝑁)) |
53 | 52 | adantl 272 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (𝑀...𝑁)) |
54 | 53 | expr 368 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑛 ∈ (𝑀...𝑁))) |
55 | 54 | imim1d 75 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾))))) |
56 | | oveq1 5675 |
. . . . . . . . . 10
⊢
((seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1))) = ((seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1)))) |
57 | | simprl 499 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (ℤ≥‘𝑀)) |
58 | 43 | adantlr 462 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
59 | 44 | adantlr 462 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
60 | 57, 58, 59 | iseqp1 9945 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
61 | 46 | adantr 271 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝐾 ∈ ℤ) |
62 | | eluzadd 9110 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → (𝑛 + 𝐾) ∈
(ℤ≥‘(𝑀 + 𝐾))) |
63 | 57, 61, 62 | syl2anc 404 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 𝐾) ∈
(ℤ≥‘(𝑀 + 𝐾))) |
64 | 48 | adantlr 462 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝐺‘𝑥) ∈ 𝑆) |
65 | 63, 64, 59 | iseqp1 9945 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 𝐾) + 1)) = ((seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) + (𝐺‘((𝑛 + 𝐾) + 1)))) |
66 | | eluzelz 9091 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → 𝑛 ∈ ℤ) |
67 | 57, 66 | syl 14 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ ℤ) |
68 | | zcn 8818 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
ℂ) |
69 | | zcn 8818 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ ℤ → 𝐾 ∈
ℂ) |
70 | | ax-1cn 7501 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℂ |
71 | | add32 7704 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ ∧ 𝐾 ∈
ℂ) → ((𝑛 + 1) +
𝐾) = ((𝑛 + 𝐾) + 1)) |
72 | 70, 71 | mp3an2 1262 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑛 + 1) + 𝐾) = ((𝑛 + 𝐾) + 1)) |
73 | 68, 69, 72 | syl2an 284 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑛 + 1) + 𝐾) = ((𝑛 + 𝐾) + 1)) |
74 | 67, 61, 73 | syl2anc 404 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((𝑛 + 1) + 𝐾) = ((𝑛 + 𝐾) + 1)) |
75 | 74 | fveq2d 5324 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 𝐾) + 1))) |
76 | | fveq2 5320 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝑛 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑛 + 1))) |
77 | | oveq1 5675 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = (𝑛 + 1) → (𝑘 + 𝐾) = ((𝑛 + 1) + 𝐾)) |
78 | 77 | fveq2d 5324 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝑛 + 1) → (𝐺‘(𝑘 + 𝐾)) = (𝐺‘((𝑛 + 1) + 𝐾))) |
79 | 76, 78 | eqeq12d 2103 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘) = (𝐺‘(𝑘 + 𝐾)) ↔ (𝐹‘(𝑛 + 1)) = (𝐺‘((𝑛 + 1) + 𝐾)))) |
80 | 37 | adantr 271 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) = (𝐺‘(𝑘 + 𝐾))) |
81 | | simprr 500 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 1) ∈ (𝑀...𝑁)) |
82 | 79, 80, 81 | rspcdva 2730 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘(𝑛 + 1)) = (𝐺‘((𝑛 + 1) + 𝐾))) |
83 | 74 | fveq2d 5324 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐺‘((𝑛 + 1) + 𝐾)) = (𝐺‘((𝑛 + 𝐾) + 1))) |
84 | 82, 83 | eqtrd 2121 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘(𝑛 + 1)) = (𝐺‘((𝑛 + 𝐾) + 1))) |
85 | 84 | oveq2d 5684 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1))) = ((seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) + (𝐺‘((𝑛 + 𝐾) + 1)))) |
86 | 65, 75, 85 | 3eqtr4d 2131 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)) = ((seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1)))) |
87 | 60, 86 | eqeq12d 2103 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)) ↔ ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1))) = ((seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1))))) |
88 | 56, 87 | syl5ibr 155 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)))) |
89 | 88 | expr 368 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾))))) |
90 | 89 | a2d 26 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾))))) |
91 | 55, 90 | syld 45 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾))))) |
92 | 91 | expcom 115 |
. . . . 5
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (𝜑 → ((𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)))))) |
93 | 92 | a2d 26 |
. . . 4
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → ((𝜑 → (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)))) → (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)))))) |
94 | 10, 17, 24, 31, 51, 93 | uzind4 9139 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾))))) |
95 | 1, 94 | mpcom 36 |
. 2
⊢ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾)))) |
96 | 3, 95 | mpd 13 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾))) |