Step | Hyp | Ref
| Expression |
1 | | iseqsplit.3 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) |
2 | | eluzfz2 9341 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘(𝑀 + 1)) → 𝑁 ∈ ((𝑀 + 1)...𝑁)) |
3 | 1, 2 | syl 14 |
. 2
⊢ (𝜑 → 𝑁 ∈ ((𝑀 + 1)...𝑁)) |
4 | | eleq1 2145 |
. . . . . 6
⊢ (𝑥 = (𝑀 + 1) → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ (𝑀 + 1) ∈ ((𝑀 + 1)...𝑁))) |
5 | | fveq2 5253 |
. . . . . . 7
⊢ (𝑥 = (𝑀 + 1) → (seq𝐾( + , 𝐹, 𝑆)‘𝑥) = (seq𝐾( + , 𝐹, 𝑆)‘(𝑀 + 1))) |
6 | | fveq2 5253 |
. . . . . . . 8
⊢ (𝑥 = (𝑀 + 1) → (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥) = (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑀 + 1))) |
7 | 6 | oveq2d 5607 |
. . . . . . 7
⊢ (𝑥 = (𝑀 + 1) → ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑀 + 1)))) |
8 | 5, 7 | eqeq12d 2097 |
. . . . . 6
⊢ (𝑥 = (𝑀 + 1) → ((seq𝐾( + , 𝐹, 𝑆)‘𝑥) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥)) ↔ (seq𝐾( + , 𝐹, 𝑆)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑀 + 1))))) |
9 | 4, 8 | imbi12d 232 |
. . . . 5
⊢ (𝑥 = (𝑀 + 1) → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑥) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥))) ↔ ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑀 + 1)))))) |
10 | 9 | imbi2d 228 |
. . . 4
⊢ (𝑥 = (𝑀 + 1) → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑥) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥)))) ↔ (𝜑 → ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑀 + 1))))))) |
11 | | eleq1 2145 |
. . . . . 6
⊢ (𝑥 = 𝑛 → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ 𝑛 ∈ ((𝑀 + 1)...𝑁))) |
12 | | fveq2 5253 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → (seq𝐾( + , 𝐹, 𝑆)‘𝑥) = (seq𝐾( + , 𝐹, 𝑆)‘𝑛)) |
13 | | fveq2 5253 |
. . . . . . . 8
⊢ (𝑥 = 𝑛 → (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥) = (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛)) |
14 | 13 | oveq2d 5607 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛))) |
15 | 12, 14 | eqeq12d 2097 |
. . . . . 6
⊢ (𝑥 = 𝑛 → ((seq𝐾( + , 𝐹, 𝑆)‘𝑥) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥)) ↔ (seq𝐾( + , 𝐹, 𝑆)‘𝑛) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛)))) |
16 | 11, 15 | imbi12d 232 |
. . . . 5
⊢ (𝑥 = 𝑛 → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑥) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥))) ↔ (𝑛 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑛) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛))))) |
17 | 16 | imbi2d 228 |
. . . 4
⊢ (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑥) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥)))) ↔ (𝜑 → (𝑛 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑛) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛)))))) |
18 | | eleq1 2145 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) |
19 | | fveq2 5253 |
. . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → (seq𝐾( + , 𝐹, 𝑆)‘𝑥) = (seq𝐾( + , 𝐹, 𝑆)‘(𝑛 + 1))) |
20 | | fveq2 5253 |
. . . . . . . 8
⊢ (𝑥 = (𝑛 + 1) → (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥) = (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑛 + 1))) |
21 | 20 | oveq2d 5607 |
. . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑛 + 1)))) |
22 | 19, 21 | eqeq12d 2097 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → ((seq𝐾( + , 𝐹, 𝑆)‘𝑥) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥)) ↔ (seq𝐾( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑛 + 1))))) |
23 | 18, 22 | imbi12d 232 |
. . . . 5
⊢ (𝑥 = (𝑛 + 1) → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑥) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥))) ↔ ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑛 + 1)))))) |
24 | 23 | imbi2d 228 |
. . . 4
⊢ (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑥) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥)))) ↔ (𝜑 → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑛 + 1))))))) |
25 | | eleq1 2145 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ 𝑁 ∈ ((𝑀 + 1)...𝑁))) |
26 | | fveq2 5253 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (seq𝐾( + , 𝐹, 𝑆)‘𝑥) = (seq𝐾( + , 𝐹, 𝑆)‘𝑁)) |
27 | | fveq2 5253 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥) = (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑁)) |
28 | 27 | oveq2d 5607 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑁))) |
29 | 26, 28 | eqeq12d 2097 |
. . . . . 6
⊢ (𝑥 = 𝑁 → ((seq𝐾( + , 𝐹, 𝑆)‘𝑥) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥)) ↔ (seq𝐾( + , 𝐹, 𝑆)‘𝑁) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑁)))) |
30 | 25, 29 | imbi12d 232 |
. . . . 5
⊢ (𝑥 = 𝑁 → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑥) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥))) ↔ (𝑁 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑁) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑁))))) |
31 | 30 | imbi2d 228 |
. . . 4
⊢ (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑥) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥)))) ↔ (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑁) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑁)))))) |
32 | | iseqsplit.4 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝐾)) |
33 | | iseqsplit.5 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑥) ∈ 𝑆) |
34 | | iseqsplit.1 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
35 | 32, 33, 34 | iseqp1 9757 |
. . . . . 6
⊢ (𝜑 → (seq𝐾( + , 𝐹, 𝑆)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (𝐹‘(𝑀 + 1)))) |
36 | | eluzel2 8919 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘(𝑀 + 1)) → (𝑀 + 1) ∈ ℤ) |
37 | 1, 36 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 + 1) ∈ ℤ) |
38 | | eluzelz 8923 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈
(ℤ≥‘𝐾) → 𝑀 ∈ ℤ) |
39 | 32, 38 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℤ) |
40 | | peano2uzr 8968 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈
(ℤ≥‘(𝑀 + 1))) → 𝑥 ∈ (ℤ≥‘𝑀)) |
41 | 39, 40 | sylan 277 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑥 ∈
(ℤ≥‘𝑀)) |
42 | 32 | adantr 270 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑀 ∈ (ℤ≥‘𝐾)) |
43 | | uztrn 8930 |
. . . . . . . . . 10
⊢ ((𝑥 ∈
(ℤ≥‘𝑀) ∧ 𝑀 ∈ (ℤ≥‘𝐾)) → 𝑥 ∈ (ℤ≥‘𝐾)) |
44 | 41, 42, 43 | syl2anc 403 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑥 ∈
(ℤ≥‘𝐾)) |
45 | 44, 33 | syldan 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝑆) |
46 | 37, 45, 34 | iseq1 9752 |
. . . . . . 7
⊢ (𝜑 → (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑀 + 1)) = (𝐹‘(𝑀 + 1))) |
47 | 46 | oveq2d 5607 |
. . . . . 6
⊢ (𝜑 → ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑀 + 1))) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (𝐹‘(𝑀 + 1)))) |
48 | 35, 47 | eqtr4d 2118 |
. . . . 5
⊢ (𝜑 → (seq𝐾( + , 𝐹, 𝑆)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑀 + 1)))) |
49 | 48 | a1i13 24 |
. . . 4
⊢ ((𝑀 + 1) ∈ ℤ →
(𝜑 → ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑀 + 1)))))) |
50 | | peano2fzr 9346 |
. . . . . . . . . 10
⊢ ((𝑛 ∈
(ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → 𝑛 ∈ ((𝑀 + 1)...𝑁)) |
51 | 50 | adantl 271 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ ((𝑀 + 1)...𝑁)) |
52 | 51 | expr 367 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑀 + 1))) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → 𝑛 ∈ ((𝑀 + 1)...𝑁))) |
53 | 52 | imim1d 74 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑀 + 1))) → ((𝑛 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑛) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛))) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑛) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛))))) |
54 | | oveq1 5598 |
. . . . . . . . . 10
⊢
((seq𝐾( + , 𝐹, 𝑆)‘𝑛) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛)) → ((seq𝐾( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1))) = (((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛)) + (𝐹‘(𝑛 + 1)))) |
55 | | simprl 498 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ (ℤ≥‘(𝑀 + 1))) |
56 | | peano2uz 8966 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈
(ℤ≥‘𝐾) → (𝑀 + 1) ∈
(ℤ≥‘𝐾)) |
57 | 32, 56 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑀 + 1) ∈
(ℤ≥‘𝐾)) |
58 | 57 | adantr 270 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝑀 + 1) ∈
(ℤ≥‘𝐾)) |
59 | | uztrn 8930 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈
(ℤ≥‘(𝑀 + 1)) ∧ (𝑀 + 1) ∈
(ℤ≥‘𝐾)) → 𝑛 ∈ (ℤ≥‘𝐾)) |
60 | 55, 58, 59 | syl2anc 403 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ (ℤ≥‘𝐾)) |
61 | 33 | adantlr 461 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑥) ∈ 𝑆) |
62 | 34 | adantlr 461 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
63 | 60, 61, 62 | iseqp1 9757 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (seq𝐾( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
64 | 45 | adantlr 461 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝑆) |
65 | 55, 64, 62 | iseqp1 9757 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
66 | 65 | oveq2d 5607 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑛 + 1))) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + ((seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1))))) |
67 | | simpl 107 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝜑) |
68 | 32, 33, 34 | iseqcl 9756 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (seq𝐾( + , 𝐹, 𝑆)‘𝑀) ∈ 𝑆) |
69 | 68 | adantr 270 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (seq𝐾( + , 𝐹, 𝑆)‘𝑀) ∈ 𝑆) |
70 | 55, 64, 62 | iseqcl 9756 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛) ∈ 𝑆) |
71 | | fveq2 5253 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑛 + 1) → (𝐹‘𝑥) = (𝐹‘(𝑛 + 1))) |
72 | 71 | eleq1d 2151 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑛 + 1) → ((𝐹‘𝑥) ∈ 𝑆 ↔ (𝐹‘(𝑛 + 1)) ∈ 𝑆)) |
73 | | elfzuz 9331 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (𝐾...𝑁) → 𝑥 ∈ (ℤ≥‘𝐾)) |
74 | 73, 33 | sylan2 280 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐾...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) |
75 | 74 | ralrimiva 2440 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑥 ∈ (𝐾...𝑁)(𝐹‘𝑥) ∈ 𝑆) |
76 | 75 | adantr 270 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ∀𝑥 ∈ (𝐾...𝑁)(𝐹‘𝑥) ∈ 𝑆) |
77 | | fzss1 9371 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑀 + 1) ∈
(ℤ≥‘𝐾) → ((𝑀 + 1)...𝑁) ⊆ (𝐾...𝑁)) |
78 | 32, 56, 77 | 3syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝐾...𝑁)) |
79 | | simpr 108 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈
(ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) |
80 | | ssel2 3005 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑀 + 1)...𝑁) ⊆ (𝐾...𝑁) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → (𝑛 + 1) ∈ (𝐾...𝑁)) |
81 | 78, 79, 80 | syl2an 283 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝑛 + 1) ∈ (𝐾...𝑁)) |
82 | 72, 76, 81 | rspcdva 2717 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝐹‘(𝑛 + 1)) ∈ 𝑆) |
83 | | iseqsplit.2 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
84 | 83 | caovassg 5738 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) ∈ 𝑆 ∧ (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛) ∈ 𝑆 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝑆)) → (((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛)) + (𝐹‘(𝑛 + 1))) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + ((seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1))))) |
85 | 67, 69, 70, 82, 84 | syl13anc 1172 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛)) + (𝐹‘(𝑛 + 1))) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + ((seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1))))) |
86 | 66, 85 | eqtr4d 2118 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑛 + 1))) = (((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛)) + (𝐹‘(𝑛 + 1)))) |
87 | 63, 86 | eqeq12d 2097 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((seq𝐾( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑛 + 1))) ↔ ((seq𝐾( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1))) = (((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛)) + (𝐹‘(𝑛 + 1))))) |
88 | 54, 87 | syl5ibr 154 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((seq𝐾( + , 𝐹, 𝑆)‘𝑛) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛)) → (seq𝐾( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑛 + 1))))) |
89 | 88 | expr 367 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑀 + 1))) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → ((seq𝐾( + , 𝐹, 𝑆)‘𝑛) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛)) → (seq𝐾( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑛 + 1)))))) |
90 | 89 | a2d 26 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑀 + 1))) → (((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑛) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛))) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑛 + 1)))))) |
91 | 53, 90 | syld 44 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑀 + 1))) → ((𝑛 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑛) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛))) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑛 + 1)))))) |
92 | 91 | expcom 114 |
. . . . 5
⊢ (𝑛 ∈
(ℤ≥‘(𝑀 + 1)) → (𝜑 → ((𝑛 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑛) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛))) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑛 + 1))))))) |
93 | 92 | a2d 26 |
. . . 4
⊢ (𝑛 ∈
(ℤ≥‘(𝑀 + 1)) → ((𝜑 → (𝑛 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑛) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛)))) → (𝜑 → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑛 + 1))))))) |
94 | 10, 17, 24, 31, 49, 93 | uzind4 8971 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘(𝑀 + 1)) → (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑁) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑁))))) |
95 | 1, 94 | mpcom 36 |
. 2
⊢ (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑁) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑁)))) |
96 | 3, 95 | mpd 13 |
1
⊢ (𝜑 → (seq𝐾( + , 𝐹, 𝑆)‘𝑁) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑁))) |