Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqval GIF version

Theorem iseqval 9763
 Description: Value of the sequence builder function. (Contributed by Jim Kingdon, 30-May-2020.)
Hypotheses
Ref Expression
iseqval.1 𝑅 = frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)
iseqval.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
iseqval.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
iseqval (𝜑 → seq𝑀( + , 𝐹, 𝑆) = ran 𝑅)
Distinct variable groups:   𝑤,𝐹,𝑥,𝑦,𝑧   𝑤, + ,𝑥,𝑦,𝑧   𝑤,𝑀,𝑥,𝑦,𝑧   𝑤,𝑆,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝑅(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem iseqval
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqval.1 . . . 4 𝑅 = frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)
2 simprl 498 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → 𝑥 ∈ (ℤ𝑀))
3 simprr 499 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → 𝑦𝑆)
4 iseqval.pl . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
54caovclg 5735 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 + 𝑏) ∈ 𝑆)
65adantlr 461 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 + 𝑏) ∈ 𝑆)
7 iseqval.f . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
87ralrimiva 2442 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ 𝑆)
9 fveq2 5256 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
109eleq1d 2153 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝑦) ∈ 𝑆))
1110cbvralv 2585 . . . . . . . . . . . . 13 (∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ 𝑆 ↔ ∀𝑦 ∈ (ℤ𝑀)(𝐹𝑦) ∈ 𝑆)
128, 11sylib 120 . . . . . . . . . . . 12 (𝜑 → ∀𝑦 ∈ (ℤ𝑀)(𝐹𝑦) ∈ 𝑆)
1312adantr 270 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → ∀𝑦 ∈ (ℤ𝑀)(𝐹𝑦) ∈ 𝑆)
14 peano2uz 8980 . . . . . . . . . . . . 13 (𝑥 ∈ (ℤ𝑀) → (𝑥 + 1) ∈ (ℤ𝑀))
15 fveq2 5256 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 + 1) → (𝐹𝑦) = (𝐹‘(𝑥 + 1)))
1615eleq1d 2153 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 + 1) → ((𝐹𝑦) ∈ 𝑆 ↔ (𝐹‘(𝑥 + 1)) ∈ 𝑆))
1716rspcv 2710 . . . . . . . . . . . . 13 ((𝑥 + 1) ∈ (ℤ𝑀) → (∀𝑦 ∈ (ℤ𝑀)(𝐹𝑦) ∈ 𝑆 → (𝐹‘(𝑥 + 1)) ∈ 𝑆))
1814, 17syl 14 . . . . . . . . . . . 12 (𝑥 ∈ (ℤ𝑀) → (∀𝑦 ∈ (ℤ𝑀)(𝐹𝑦) ∈ 𝑆 → (𝐹‘(𝑥 + 1)) ∈ 𝑆))
1918ad2antrl 474 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (∀𝑦 ∈ (ℤ𝑀)(𝐹𝑦) ∈ 𝑆 → (𝐹‘(𝑥 + 1)) ∈ 𝑆))
2013, 19mpd 13 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝐹‘(𝑥 + 1)) ∈ 𝑆)
216, 3, 20caovcld 5736 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝑆)
22 oveq1 5601 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑧 + 1) = (𝑥 + 1))
2322fveq2d 5260 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝐹‘(𝑧 + 1)) = (𝐹‘(𝑥 + 1)))
2423oveq2d 5610 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘(𝑥 + 1))))
25 oveq1 5601 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑤 + (𝐹‘(𝑥 + 1))) = (𝑦 + (𝐹‘(𝑥 + 1))))
26 eqid 2085 . . . . . . . . . 10 (𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))
2724, 25, 26ovmpt2g 5717 . . . . . . . . 9 ((𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆 ∧ (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝑆) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = (𝑦 + (𝐹‘(𝑥 + 1))))
282, 3, 21, 27syl3anc 1172 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = (𝑦 + (𝐹‘(𝑥 + 1))))
29283impb 1137 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = (𝑦 + (𝐹‘(𝑥 + 1))))
3029opeq2d 3606 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆) → ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩ = ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩)
3130mpt2eq3dva 5651 . . . . 5 (𝜑 → (𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩) = (𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩))
32 freceq1 6092 . . . . 5 ((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩) = (𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) → frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩))
3331, 32syl 14 . . . 4 (𝜑 → frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩))
341, 33syl5eq 2129 . . 3 (𝜑𝑅 = frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩))
3534rneqd 4625 . 2 (𝜑 → ran 𝑅 = ran frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩))
36 df-iseq 9755 . 2 seq𝑀( + , 𝐹, 𝑆) = ran frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
3735, 36syl6reqr 2136 1 (𝜑 → seq𝑀( + , 𝐹, 𝑆) = ran 𝑅)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   ∧ w3a 922   = wceq 1287   ∈ wcel 1436  ∀wral 2355  ⟨cop 3428  ran crn 4405  ‘cfv 4972  (class class class)co 5594   ↦ cmpt2 5596  freccfrec 6090  1c1 7272   + caddc 7274  ℤ≥cuz 8928  seqcseq 9754 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3925  ax-pow 3977  ax-pr 4003  ax-un 4227  ax-setind 4319  ax-cnex 7357  ax-resscn 7358  ax-1cn 7359  ax-1re 7360  ax-icn 7361  ax-addcl 7362  ax-addrcl 7363  ax-mulcl 7364  ax-addcom 7366  ax-addass 7368  ax-distr 7370  ax-i2m1 7371  ax-0lt1 7372  ax-0id 7374  ax-rnegex 7375  ax-cnre 7377  ax-pre-ltirr 7378  ax-pre-ltwlin 7379  ax-pre-lttrn 7380  ax-pre-ltadd 7382 This theorem depends on definitions:  df-bi 115  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2616  df-sbc 2829  df-dif 2988  df-un 2990  df-in 2992  df-ss 2999  df-pw 3411  df-sn 3431  df-pr 3432  df-op 3434  df-uni 3631  df-int 3666  df-br 3815  df-opab 3869  df-mpt 3870  df-id 4087  df-xp 4410  df-rel 4411  df-cnv 4412  df-co 4413  df-dm 4414  df-rn 4415  df-res 4416  df-ima 4417  df-iota 4937  df-fun 4974  df-fn 4975  df-f 4976  df-fv 4980  df-riota 5550  df-ov 5597  df-oprab 5598  df-mpt2 5599  df-recs 6005  df-frec 6091  df-pnf 7445  df-mnf 7446  df-xr 7447  df-ltxr 7448  df-le 7449  df-sub 7576  df-neg 7577  df-inn 8335  df-n0 8584  df-z 8661  df-uz 8929  df-iseq 9755 This theorem is referenced by:  iseq1  9766  iseqfcl  9768  iseqcl  9770  iseqp1  9771
 Copyright terms: Public domain W3C validator