Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iser0 GIF version

Theorem iser0 9787
 Description: The value of the partial sums in a zero-valued infinite series. (Contributed by Jim Kingdon, 19-Aug-2021.)
Hypothesis
Ref Expression
iser0.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
iser0 (𝑁𝑍 → (seq𝑀( + , (𝑍 × {0}), ℂ)‘𝑁) = 0)

Proof of Theorem iser0
Dummy variables 𝑘 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 00id 7526 . . 3 (0 + 0) = 0
21a1i 9 . 2 (𝑁𝑍 → (0 + 0) = 0)
3 iser0.1 . . . 4 𝑍 = (ℤ𝑀)
43eleq2i 2149 . . 3 (𝑁𝑍𝑁 ∈ (ℤ𝑀))
54biimpi 118 . 2 (𝑁𝑍𝑁 ∈ (ℤ𝑀))
6 0cn 7383 . . 3 0 ∈ ℂ
7 elfzuz 9331 . . . . 5 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ𝑀))
87, 3syl6eleqr 2176 . . . 4 (𝑘 ∈ (𝑀...𝑁) → 𝑘𝑍)
98adantl 271 . . 3 ((𝑁𝑍𝑘 ∈ (𝑀...𝑁)) → 𝑘𝑍)
10 fvconst2g 5451 . . 3 ((0 ∈ ℂ ∧ 𝑘𝑍) → ((𝑍 × {0})‘𝑘) = 0)
116, 9, 10sylancr 405 . 2 ((𝑁𝑍𝑘 ∈ (𝑀...𝑁)) → ((𝑍 × {0})‘𝑘) = 0)
12 0cnd 7384 . 2 (𝑁𝑍 → 0 ∈ ℂ)
133eleq2i 2149 . . . . . 6 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
1413biimpri 131 . . . . 5 (𝑘 ∈ (ℤ𝑀) → 𝑘𝑍)
1514adantl 271 . . . 4 ((𝑁𝑍𝑘 ∈ (ℤ𝑀)) → 𝑘𝑍)
166, 15, 10sylancr 405 . . 3 ((𝑁𝑍𝑘 ∈ (ℤ𝑀)) → ((𝑍 × {0})‘𝑘) = 0)
1716, 6syl6eqel 2173 . 2 ((𝑁𝑍𝑘 ∈ (ℤ𝑀)) → ((𝑍 × {0})‘𝑘) ∈ ℂ)
18 addcl 7370 . . 3 ((𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑘 + 𝑣) ∈ ℂ)
1918adantl 271 . 2 ((𝑁𝑍 ∧ (𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑘 + 𝑣) ∈ ℂ)
202, 5, 11, 12, 17, 19iseqid3s 9781 1 (𝑁𝑍 → (seq𝑀( + , (𝑍 × {0}), ℂ)‘𝑁) = 0)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   = wceq 1285   ∈ wcel 1434  {csn 3422   × cxp 4399  ‘cfv 4969  (class class class)co 5591  ℂcc 7251  0cc0 7253   + caddc 7256  ℤ≥cuz 8914  ...cfz 9319  seqcseq 9740 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366  ax-cnex 7339  ax-resscn 7340  ax-1cn 7341  ax-1re 7342  ax-icn 7343  ax-addcl 7344  ax-addrcl 7345  ax-mulcl 7346  ax-addcom 7348  ax-addass 7350  ax-distr 7352  ax-i2m1 7353  ax-0lt1 7354  ax-0id 7356  ax-rnegex 7357  ax-cnre 7359  ax-pre-ltirr 7360  ax-pre-ltwlin 7361  ax-pre-lttrn 7362  ax-pre-ltadd 7364 This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4084  df-iord 4157  df-on 4159  df-ilim 4160  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-riota 5547  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-recs 6002  df-frec 6088  df-pnf 7427  df-mnf 7428  df-xr 7429  df-ltxr 7430  df-le 7431  df-sub 7558  df-neg 7559  df-inn 8317  df-n0 8566  df-z 8647  df-uz 8915  df-fz 9320  df-fzo 9444  df-iseq 9741 This theorem is referenced by:  iser0f  9788
 Copyright terms: Public domain W3C validator