![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iser0f | GIF version |
Description: A zero-valued infinite series is equal to the constant zero function. (Contributed by Jim Kingdon, 19-Aug-2021.) |
Ref | Expression |
---|---|
iser0.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
iser0f | ⊢ (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0}), ℂ) = (𝑍 × {0})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iser0.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | 1 | iser0 9785 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → (seq𝑀( + , (𝑍 × {0}), ℂ)‘𝑘) = 0) |
3 | c0ex 7383 | . . . . 5 ⊢ 0 ∈ V | |
4 | 3 | fvconst2 5451 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → ((𝑍 × {0})‘𝑘) = 0) |
5 | 2, 4 | eqtr4d 2118 | . . 3 ⊢ (𝑘 ∈ 𝑍 → (seq𝑀( + , (𝑍 × {0}), ℂ)‘𝑘) = ((𝑍 × {0})‘𝑘)) |
6 | 5 | rgen 2422 | . 2 ⊢ ∀𝑘 ∈ 𝑍 (seq𝑀( + , (𝑍 × {0}), ℂ)‘𝑘) = ((𝑍 × {0})‘𝑘) |
7 | eqid 2083 | . . . . . 6 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
8 | id 19 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℤ) | |
9 | 1 | eleq2i 2149 | . . . . . . . 8 ⊢ (𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ≥‘𝑀)) |
10 | 0cnd 7382 | . . . . . . . . 9 ⊢ (𝑘 ∈ 𝑍 → 0 ∈ ℂ) | |
11 | 4, 10 | eqeltrd 2159 | . . . . . . . 8 ⊢ (𝑘 ∈ 𝑍 → ((𝑍 × {0})‘𝑘) ∈ ℂ) |
12 | 9, 11 | sylbir 133 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → ((𝑍 × {0})‘𝑘) ∈ ℂ) |
13 | 12 | adantl 271 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑍 × {0})‘𝑘) ∈ ℂ) |
14 | 7, 8, 13 | iserf 9766 | . . . . 5 ⊢ (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0}), ℂ):(ℤ≥‘𝑀)⟶ℂ) |
15 | ffn 5112 | . . . . 5 ⊢ (seq𝑀( + , (𝑍 × {0}), ℂ):(ℤ≥‘𝑀)⟶ℂ → seq𝑀( + , (𝑍 × {0}), ℂ) Fn (ℤ≥‘𝑀)) | |
16 | 14, 15 | syl 14 | . . . 4 ⊢ (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0}), ℂ) Fn (ℤ≥‘𝑀)) |
17 | 1 | fneq2i 5060 | . . . 4 ⊢ (seq𝑀( + , (𝑍 × {0}), ℂ) Fn 𝑍 ↔ seq𝑀( + , (𝑍 × {0}), ℂ) Fn (ℤ≥‘𝑀)) |
18 | 16, 17 | sylibr 132 | . . 3 ⊢ (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0}), ℂ) Fn 𝑍) |
19 | 3 | fconst 5152 | . . . 4 ⊢ (𝑍 × {0}):𝑍⟶{0} |
20 | ffn 5112 | . . . 4 ⊢ ((𝑍 × {0}):𝑍⟶{0} → (𝑍 × {0}) Fn 𝑍) | |
21 | 19, 20 | ax-mp 7 | . . 3 ⊢ (𝑍 × {0}) Fn 𝑍 |
22 | eqfnfv 5340 | . . 3 ⊢ ((seq𝑀( + , (𝑍 × {0}), ℂ) Fn 𝑍 ∧ (𝑍 × {0}) Fn 𝑍) → (seq𝑀( + , (𝑍 × {0}), ℂ) = (𝑍 × {0}) ↔ ∀𝑘 ∈ 𝑍 (seq𝑀( + , (𝑍 × {0}), ℂ)‘𝑘) = ((𝑍 × {0})‘𝑘))) | |
23 | 18, 21, 22 | sylancl 404 | . 2 ⊢ (𝑀 ∈ ℤ → (seq𝑀( + , (𝑍 × {0}), ℂ) = (𝑍 × {0}) ↔ ∀𝑘 ∈ 𝑍 (seq𝑀( + , (𝑍 × {0}), ℂ)‘𝑘) = ((𝑍 × {0})‘𝑘))) |
24 | 6, 23 | mpbiri 166 | 1 ⊢ (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0}), ℂ) = (𝑍 × {0})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 = wceq 1285 ∈ wcel 1434 ∀wral 2353 {csn 3422 × cxp 4397 Fn wfn 4962 ⟶wf 4963 ‘cfv 4967 ℂcc 7249 0cc0 7251 + caddc 7254 ℤcz 8644 ℤ≥cuz 8912 seqcseq 9738 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3919 ax-sep 3922 ax-nul 3930 ax-pow 3974 ax-pr 3999 ax-un 4223 ax-setind 4315 ax-iinf 4365 ax-cnex 7337 ax-resscn 7338 ax-1cn 7339 ax-1re 7340 ax-icn 7341 ax-addcl 7342 ax-addrcl 7343 ax-mulcl 7344 ax-addcom 7346 ax-addass 7348 ax-distr 7350 ax-i2m1 7351 ax-0lt1 7352 ax-0id 7354 ax-rnegex 7355 ax-cnre 7357 ax-pre-ltirr 7358 ax-pre-ltwlin 7359 ax-pre-lttrn 7360 ax-pre-ltadd 7362 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2614 df-sbc 2827 df-csb 2920 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-nul 3270 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-int 3663 df-iun 3706 df-br 3812 df-opab 3866 df-mpt 3867 df-tr 3902 df-id 4083 df-iord 4156 df-on 4158 df-ilim 4159 df-suc 4161 df-iom 4368 df-xp 4405 df-rel 4406 df-cnv 4407 df-co 4408 df-dm 4409 df-rn 4410 df-res 4411 df-ima 4412 df-iota 4932 df-fun 4969 df-fn 4970 df-f 4971 df-f1 4972 df-fo 4973 df-f1o 4974 df-fv 4975 df-riota 5545 df-ov 5592 df-oprab 5593 df-mpt2 5594 df-1st 5844 df-2nd 5845 df-recs 6000 df-frec 6086 df-pnf 7425 df-mnf 7426 df-xr 7427 df-ltxr 7428 df-le 7429 df-sub 7556 df-neg 7557 df-inn 8315 df-n0 8564 df-z 8645 df-uz 8913 df-fz 9318 df-fzo 9442 df-iseq 9739 |
This theorem is referenced by: iserclim0 10516 |
Copyright terms: Public domain | W3C validator |