Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  isummo GIF version

Theorem isummo 10735
 Description: A sum has at most one limit. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 10-Sep-2022.)
Hypotheses
Ref Expression
isummo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
isummo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
isummo.3 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))
Assertion
Ref Expression
isummo (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚))))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑛,𝐹   𝜑,𝑘,𝑛   𝐴,𝑓,𝑗,𝑚,𝑘,𝑛,𝑥   𝐵,𝑓,𝑗,𝑚,𝑛   𝑓,𝐹,𝑗,𝑘,𝑚,𝑥   𝑛,𝐺,𝑥   𝜑,𝑓,𝑗,𝑚,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑘)   𝐺(𝑓,𝑗,𝑘,𝑚)

Proof of Theorem isummo
Dummy variables 𝑎 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5289 . . . . . . . . . 10 (𝑚 = 𝑛 → (ℤ𝑚) = (ℤ𝑛))
21sseq2d 3052 . . . . . . . . 9 (𝑚 = 𝑛 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐴 ⊆ (ℤ𝑛)))
31raleqdv 2568 . . . . . . . . 9 (𝑚 = 𝑛 → (∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ↔ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴))
4 iseqeq1 9822 . . . . . . . . . 10 (𝑚 = 𝑛 → seq𝑚( + , 𝐹, ℂ) = seq𝑛( + , 𝐹, ℂ))
54breq1d 3847 . . . . . . . . 9 (𝑚 = 𝑛 → (seq𝑚( + , 𝐹, ℂ) ⇝ 𝑦 ↔ seq𝑛( + , 𝐹, ℂ) ⇝ 𝑦))
62, 3, 53anbi123d 1248 . . . . . . . 8 (𝑚 = 𝑛 → ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑦) ↔ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹, ℂ) ⇝ 𝑦)))
76cbvrexv 2591 . . . . . . 7 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑦) ↔ ∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹, ℂ) ⇝ 𝑦))
8 reeanv 2536 . . . . . . . . 9 (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹, ℂ) ⇝ 𝑦)) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∧ ∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹, ℂ) ⇝ 𝑦)))
9 simprl3 990 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹, ℂ) ⇝ 𝑦))) → seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥)
10 isummo.1 . . . . . . . . . . . . . 14 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
11 simpll 496 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹, ℂ) ⇝ 𝑦))) → 𝜑)
12 isummo.2 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1311, 12sylan 277 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹, ℂ) ⇝ 𝑦))) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
14 simplrl 502 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹, ℂ) ⇝ 𝑦))) → 𝑚 ∈ ℤ)
15 simplrr 503 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹, ℂ) ⇝ 𝑦))) → 𝑛 ∈ ℤ)
16 simprl1 988 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹, ℂ) ⇝ 𝑦))) → 𝐴 ⊆ (ℤ𝑚))
17 simprr1 991 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹, ℂ) ⇝ 𝑦))) → 𝐴 ⊆ (ℤ𝑛))
18 eleq1w 2148 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
1918dcbid 786 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (DECID 𝑗𝐴DECID 𝑘𝐴))
20 simprl2 989 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹, ℂ) ⇝ 𝑦))) → ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)
2120adantr 270 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹, ℂ) ⇝ 𝑦))) ∧ 𝑘 ∈ (ℤ𝑚)) → ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)
22 simpr 108 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹, ℂ) ⇝ 𝑦))) ∧ 𝑘 ∈ (ℤ𝑚)) → 𝑘 ∈ (ℤ𝑚))
2319, 21, 22rspcdva 2727 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹, ℂ) ⇝ 𝑦))) ∧ 𝑘 ∈ (ℤ𝑚)) → DECID 𝑘𝐴)
24 simprr2 992 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹, ℂ) ⇝ 𝑦))) → ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴)
2524adantr 270 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹, ℂ) ⇝ 𝑦))) ∧ 𝑘 ∈ (ℤ𝑛)) → ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴)
26 simpr 108 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹, ℂ) ⇝ 𝑦))) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ (ℤ𝑛))
2719, 25, 26rspcdva 2727 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹, ℂ) ⇝ 𝑦))) ∧ 𝑘 ∈ (ℤ𝑛)) → DECID 𝑘𝐴)
2810, 13, 14, 15, 16, 17, 23, 27isumrb 10730 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹, ℂ) ⇝ 𝑦))) → (seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥 ↔ seq𝑛( + , 𝐹, ℂ) ⇝ 𝑥))
299, 28mpbid 145 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹, ℂ) ⇝ 𝑦))) → seq𝑛( + , 𝐹, ℂ) ⇝ 𝑥)
30 simprr3 993 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹, ℂ) ⇝ 𝑦))) → seq𝑛( + , 𝐹, ℂ) ⇝ 𝑦)
31 climuni 10644 . . . . . . . . . . . 12 ((seq𝑛( + , 𝐹, ℂ) ⇝ 𝑥 ∧ seq𝑛( + , 𝐹, ℂ) ⇝ 𝑦) → 𝑥 = 𝑦)
3229, 30, 31syl2anc 403 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹, ℂ) ⇝ 𝑦))) → 𝑥 = 𝑦)
3332exp31 356 . . . . . . . . . 10 (𝜑 → ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹, ℂ) ⇝ 𝑦)) → 𝑥 = 𝑦)))
3433rexlimdvv 2495 . . . . . . . . 9 (𝜑 → (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹, ℂ) ⇝ 𝑦)) → 𝑥 = 𝑦))
358, 34syl5bir 151 . . . . . . . 8 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∧ ∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹, ℂ) ⇝ 𝑦)) → 𝑥 = 𝑦))
3635expdimp 255 . . . . . . 7 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥)) → (∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ𝑛) ∧ ∀𝑗 ∈ (ℤ𝑛)DECID 𝑗𝐴 ∧ seq𝑛( + , 𝐹, ℂ) ⇝ 𝑦) → 𝑥 = 𝑦))
377, 36syl5bi 150 . . . . . 6 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥)) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑦) → 𝑥 = 𝑦))
38 isummo.3 . . . . . . 7 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))
3910, 12, 38isummolem2 10734 . . . . . 6 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺, ℂ)‘𝑚)) → 𝑥 = 𝑦))
4037, 39jaod 672 . . . . 5 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥)) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺, ℂ)‘𝑚))) → 𝑥 = 𝑦))
4110, 12, 38isummolem2 10734 . . . . . . . 8 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑦)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚)) → 𝑦 = 𝑥))
42 equcom 1639 . . . . . . . 8 (𝑦 = 𝑥𝑥 = 𝑦)
4341, 42syl6ib 159 . . . . . . 7 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑦)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚)) → 𝑥 = 𝑦))
4443impancom 256 . . . . . 6 ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚))) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑦) → 𝑥 = 𝑦))
45 oveq2 5642 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (1...𝑚) = (1...𝑛))
46 f1oeq2 5229 . . . . . . . . . . . 12 ((1...𝑚) = (1...𝑛) → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑛)–1-1-onto𝐴))
4745, 46syl 14 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑛)–1-1-onto𝐴))
48 fveq2 5289 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (seq1( + , 𝐺, ℂ)‘𝑚) = (seq1( + , 𝐺, ℂ)‘𝑛))
4948eqeq2d 2099 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑦 = (seq1( + , 𝐺, ℂ)‘𝑚) ↔ 𝑦 = (seq1( + , 𝐺, ℂ)‘𝑛)))
5047, 49anbi12d 457 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺, ℂ)‘𝑚)) ↔ (𝑓:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺, ℂ)‘𝑛))))
5150exbidv 1753 . . . . . . . . 9 (𝑚 = 𝑛 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺, ℂ)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺, ℂ)‘𝑛))))
52 f1oeq1 5228 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑓:(1...𝑛)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴))
53 breq1 3840 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑎 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑎 ≤ (♯‘𝐴)))
54 fveq2 5289 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑎 → (𝑓𝑛) = (𝑓𝑎))
5554csbeq1d 2937 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑎(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑎) / 𝑘𝐵)
5653, 55ifbieq1d 3409 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑎 → if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0) = if(𝑎 ≤ (♯‘𝐴), (𝑓𝑎) / 𝑘𝐵, 0))
5756cbvmptv 3926 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0)) = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑓𝑎) / 𝑘𝐵, 0))
58 fveq1 5288 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝑔 → (𝑓𝑎) = (𝑔𝑎))
5958csbeq1d 2937 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝑔(𝑓𝑎) / 𝑘𝐵 = (𝑔𝑎) / 𝑘𝐵)
6059ifeq1d 3404 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → if(𝑎 ≤ (♯‘𝐴), (𝑓𝑎) / 𝑘𝐵, 0) = if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0))
6160mpteq2dv 3921 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑓𝑎) / 𝑘𝐵, 0)) = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))
6257, 61syl5eq 2132 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0)) = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))
6338, 62syl5eq 2132 . . . . . . . . . . . . . 14 (𝑓 = 𝑔𝐺 = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)))
64 iseqeq3 9824 . . . . . . . . . . . . . 14 (𝐺 = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)) → seq1( + , 𝐺, ℂ) = seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)), ℂ))
6563, 64syl 14 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → seq1( + , 𝐺, ℂ) = seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)), ℂ))
6665fveq1d 5291 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (seq1( + , 𝐺, ℂ)‘𝑛) = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)), ℂ)‘𝑛))
6766eqeq2d 2099 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑦 = (seq1( + , 𝐺, ℂ)‘𝑛) ↔ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)), ℂ)‘𝑛)))
6852, 67anbi12d 457 . . . . . . . . . 10 (𝑓 = 𝑔 → ((𝑓:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺, ℂ)‘𝑛)) ↔ (𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)), ℂ)‘𝑛))))
6968cbvexv 1843 . . . . . . . . 9 (∃𝑓(𝑓:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺, ℂ)‘𝑛)) ↔ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)), ℂ)‘𝑛)))
7051, 69syl6bb 194 . . . . . . . 8 (𝑚 = 𝑛 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺, ℂ)‘𝑚)) ↔ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)), ℂ)‘𝑛))))
7170cbvrexv 2591 . . . . . . 7 (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺, ℂ)‘𝑚)) ↔ ∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)), ℂ)‘𝑛)))
72 reeanv 2536 . . . . . . . . 9 (∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)), ℂ)‘𝑛))) ↔ (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚)) ∧ ∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)), ℂ)‘𝑛))))
73 eeanv 1855 . . . . . . . . . . 11 (∃𝑓𝑔((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)), ℂ)‘𝑛))) ↔ (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)), ℂ)‘𝑛))))
74 an4 553 . . . . . . . . . . . . 13 (((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)), ℂ)‘𝑛))) ↔ ((𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴) ∧ (𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)), ℂ)‘𝑛))))
75 1zzd 8747 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 1 ∈ ℤ)
76 simplrr 503 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑛 ∈ ℕ)
7776nnzd 8837 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑛 ∈ ℤ)
7875, 77fzfigd 9803 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (1...𝑛) ∈ Fin)
79 simprr 499 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑔:(1...𝑛)–1-1-onto𝐴)
8078, 79fihasheqf1od 10162 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (♯‘(1...𝑛)) = (♯‘𝐴))
8176nnnn0d 8696 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑛 ∈ ℕ0)
82 hashfz1 10155 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ0 → (♯‘(1...𝑛)) = 𝑛)
8381, 82syl 14 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (♯‘(1...𝑛)) = 𝑛)
8480, 83eqtr3d 2122 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (♯‘𝐴) = 𝑛)
8584breq2d 3849 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (𝑎 ≤ (♯‘𝐴) ↔ 𝑎𝑛))
8685ifbid 3408 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0) = if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0))
8786mpteq2dv 3921 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)) = (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)))
88 iseqeq3 9824 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)) = (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)) → seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)), ℂ) = seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)), ℂ))
8987, 88syl 14 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)), ℂ) = seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)), ℂ))
9089fveq1d 5291 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)), ℂ)‘𝑛) = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)), ℂ)‘𝑛))
9190eqeq2d 2099 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)), ℂ)‘𝑛) ↔ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)), ℂ)‘𝑛)))
9291anbi2d 452 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → ((𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)), ℂ)‘𝑛)) ↔ (𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)), ℂ)‘𝑛))))
93 simplrl 502 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑚 ∈ ℕ)
9493nnnn0d 8696 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑚 ∈ ℕ0)
95 hashfz1 10155 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ0 → (♯‘(1...𝑚)) = 𝑚)
9694, 95syl 14 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (♯‘(1...𝑚)) = 𝑚)
9793nnzd 8837 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑚 ∈ ℤ)
9875, 97fzfigd 9803 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (1...𝑚) ∈ Fin)
99 simprl 498 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑓:(1...𝑚)–1-1-onto𝐴)
10098, 99fihasheqf1od 10162 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (♯‘(1...𝑚)) = (♯‘𝐴))
10196, 100eqtr3d 2122 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑚 = (♯‘𝐴))
102101fveq2d 5293 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (seq1( + , 𝐺, ℂ)‘𝑚) = (seq1( + , 𝐺, ℂ)‘(♯‘𝐴)))
103 simpll 496 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝜑)
104103, 12sylan 277 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
105101, 93eqeltrrd 2165 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
106105, 76jca 300 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → ((♯‘𝐴) ∈ ℕ ∧ 𝑛 ∈ ℕ))
107101oveq2d 5650 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (1...𝑚) = (1...(♯‘𝐴)))
108 f1oeq2 5229 . . . . . . . . . . . . . . . . . . . 20 ((1...𝑚) = (1...(♯‘𝐴)) → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...(♯‘𝐴))–1-1-onto𝐴))
109107, 108syl 14 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...(♯‘𝐴))–1-1-onto𝐴))
11099, 109mpbid 145 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
111 breq1 3840 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑗 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑗 ≤ (♯‘𝐴)))
112 fveq2 5289 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑗 → (𝑓𝑛) = (𝑓𝑗))
113112csbeq1d 2937 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑗(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑗) / 𝑘𝐵)
114111, 113ifbieq1d 3409 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑗 → if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0) = if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 0))
115114cbvmptv 3926 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 0))
11638, 115eqtri 2108 . . . . . . . . . . . . . . . . . 18 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 0))
117 breq1 3840 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑗 → (𝑎𝑛𝑗𝑛))
118 fveq2 5289 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑗 → (𝑔𝑎) = (𝑔𝑗))
119118csbeq1d 2937 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑗(𝑔𝑎) / 𝑘𝐵 = (𝑔𝑗) / 𝑘𝐵)
120117, 119ifbieq1d 3409 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑗 → if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0) = if(𝑗𝑛, (𝑔𝑗) / 𝑘𝐵, 0))
121120cbvmptv 3926 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)) = (𝑗 ∈ ℕ ↦ if(𝑗𝑛, (𝑔𝑗) / 𝑘𝐵, 0))
12210, 104, 106, 110, 79, 116, 121isummolem3 10732 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (seq1( + , 𝐺, ℂ)‘(♯‘𝐴)) = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)), ℂ)‘𝑛))
123102, 122eqtrd 2120 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (seq1( + , 𝐺, ℂ)‘𝑚) = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)), ℂ)‘𝑛))
124 eqeq12 2100 . . . . . . . . . . . . . . . 16 ((𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)), ℂ)‘𝑛)) → (𝑥 = 𝑦 ↔ (seq1( + , 𝐺, ℂ)‘𝑚) = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)), ℂ)‘𝑛)))
125123, 124syl5ibrcom 155 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → ((𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎𝑛, (𝑔𝑎) / 𝑘𝐵, 0)), ℂ)‘𝑛)) → 𝑥 = 𝑦))
12692, 125sylbid 148 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → ((𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)), ℂ)‘𝑛)) → 𝑥 = 𝑦))
127126expimpd 355 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴) ∧ (𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)), ℂ)‘𝑛))) → 𝑥 = 𝑦))
12874, 127syl5bi 150 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)), ℂ)‘𝑛))) → 𝑥 = 𝑦))
129128exlimdvv 1825 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (∃𝑓𝑔((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)), ℂ)‘𝑛))) → 𝑥 = 𝑦))
13073, 129syl5bir 151 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)), ℂ)‘𝑛))) → 𝑥 = 𝑦))
131130rexlimdvva 2496 . . . . . . . . 9 (𝜑 → (∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)), ℂ)‘𝑛))) → 𝑥 = 𝑦))
13272, 131syl5bir 151 . . . . . . . 8 (𝜑 → ((∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚)) ∧ ∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)), ℂ)‘𝑛))) → 𝑥 = 𝑦))
133132expdimp 255 . . . . . . 7 ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚))) → (∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (𝑔𝑎) / 𝑘𝐵, 0)), ℂ)‘𝑛)) → 𝑥 = 𝑦))
13471, 133syl5bi 150 . . . . . 6 ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚))) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺, ℂ)‘𝑚)) → 𝑥 = 𝑦))
13544, 134jaod 672 . . . . 5 ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚))) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺, ℂ)‘𝑚))) → 𝑥 = 𝑦))
13640, 135jaodan 746 . . . 4 ((𝜑 ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚)))) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺, ℂ)‘𝑚))) → 𝑥 = 𝑦))
137136expimpd 355 . . 3 (𝜑 → (((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺, ℂ)‘𝑚)))) → 𝑥 = 𝑦))
138137alrimivv 1803 . 2 (𝜑 → ∀𝑥𝑦(((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺, ℂ)‘𝑚)))) → 𝑥 = 𝑦))
139 breq2 3841 . . . . . 6 (𝑥 = 𝑦 → (seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥 ↔ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑦))
1401393anbi3d 1254 . . . . 5 (𝑥 = 𝑦 → ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑦)))
141140rexbidv 2381 . . . 4 (𝑥 = 𝑦 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑦)))
142 eqeq1 2094 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚) ↔ 𝑦 = (seq1( + , 𝐺, ℂ)‘𝑚)))
143142anbi2d 452 . . . . . 6 (𝑥 = 𝑦 → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺, ℂ)‘𝑚))))
144143exbidv 1753 . . . . 5 (𝑥 = 𝑦 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺, ℂ)‘𝑚))))
145144rexbidv 2381 . . . 4 (𝑥 = 𝑦 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺, ℂ)‘𝑚))))
146141, 145orbi12d 742 . . 3 (𝑥 = 𝑦 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺, ℂ)‘𝑚)))))
147146mo4 2009 . 2 (∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚))) ↔ ∀𝑥𝑦(((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺, ℂ)‘𝑚)))) → 𝑥 = 𝑦))
148138, 147sylibr 132 1 (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹, ℂ) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺, ℂ)‘𝑚))))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   ↔ wb 103   ∨ wo 664  DECID wdc 780   ∧ w3a 924  ∀wal 1287   = wceq 1289  ∃wex 1426   ∈ wcel 1438  ∃*wmo 1949  ∀wral 2359  ∃wrex 2360  ⦋csb 2931   ⊆ wss 2997  ifcif 3389   class class class wbr 3837   ↦ cmpt 3891  –1-1-onto→wf1o 5001  ‘cfv 5002  (class class class)co 5634  ℂcc 7327  0cc0 7329  1c1 7330   + caddc 7332   ≤ cle 7502  ℕcn 8394  ℕ0cn0 8643  ℤcz 8720  ℤ≥cuz 8988  ...cfz 9393  seqcseq4 9816  ♯chash 10147   ⇝ cli 10629 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442  ax-arch 7443  ax-caucvg 7444 This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-if 3390  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-ilim 4187  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-isom 5011  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-irdg 6117  df-frec 6138  df-1o 6163  df-oadd 6167  df-er 6272  df-en 6438  df-dom 6439  df-fin 6440  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-2 8452  df-3 8453  df-4 8454  df-n0 8644  df-z 8721  df-uz 8989  df-q 9074  df-rp 9104  df-fz 9394  df-fzo 9519  df-iseq 9818  df-seq3 9819  df-exp 9919  df-ihash 10148  df-cj 10240  df-re 10241  df-im 10242  df-rsqrt 10395  df-abs 10396  df-clim 10630 This theorem is referenced by:  fisum  10740
 Copyright terms: Public domain W3C validator