Step | Hyp | Ref
| Expression |
1 | | addcl 7467 |
. . . . 5
⊢ ((𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝑚 + 𝑗) ∈ ℂ) |
2 | 1 | adantl 271 |
. . . 4
⊢ ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ)) → (𝑚 + 𝑗) ∈ ℂ) |
3 | | addcom 7619 |
. . . . 5
⊢ ((𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝑚 + 𝑗) = (𝑗 + 𝑚)) |
4 | 3 | adantl 271 |
. . . 4
⊢ ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ)) → (𝑚 + 𝑗) = (𝑗 + 𝑚)) |
5 | | addass 7472 |
. . . . 5
⊢ ((𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑚 + 𝑗) + 𝑦) = (𝑚 + (𝑗 + 𝑦))) |
6 | 5 | adantl 271 |
. . . 4
⊢ ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑚 + 𝑗) + 𝑦) = (𝑚 + (𝑗 + 𝑦))) |
7 | | isummolem3.5 |
. . . . . 6
⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) |
8 | 7 | simpld 110 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℕ) |
9 | | nnuz 9054 |
. . . . 5
⊢ ℕ =
(ℤ≥‘1) |
10 | 8, 9 | syl6eleq 2180 |
. . . 4
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘1)) |
11 | | isummolem3.6 |
. . . . . . 7
⊢ (𝜑 → 𝑓:(1...𝑀)–1-1-onto→𝐴) |
12 | | f1ocnv 5266 |
. . . . . . 7
⊢ (𝑓:(1...𝑀)–1-1-onto→𝐴 → ◡𝑓:𝐴–1-1-onto→(1...𝑀)) |
13 | 11, 12 | syl 14 |
. . . . . 6
⊢ (𝜑 → ◡𝑓:𝐴–1-1-onto→(1...𝑀)) |
14 | | isummolem3.7 |
. . . . . 6
⊢ (𝜑 → 𝐾:(1...𝑁)–1-1-onto→𝐴) |
15 | | f1oco 5276 |
. . . . . 6
⊢ ((◡𝑓:𝐴–1-1-onto→(1...𝑀) ∧ 𝐾:(1...𝑁)–1-1-onto→𝐴) → (◡𝑓 ∘ 𝐾):(1...𝑁)–1-1-onto→(1...𝑀)) |
16 | 13, 14, 15 | syl2anc 403 |
. . . . 5
⊢ (𝜑 → (◡𝑓 ∘ 𝐾):(1...𝑁)–1-1-onto→(1...𝑀)) |
17 | | isummo.1 |
. . . . . . . . 9
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) |
18 | | isummo.2 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
19 | 17, 18, 7, 11, 14 | isummolemnm 10769 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 = 𝑀) |
20 | 19 | eqcomd 2093 |
. . . . . . 7
⊢ (𝜑 → 𝑀 = 𝑁) |
21 | 20 | oveq2d 5668 |
. . . . . 6
⊢ (𝜑 → (1...𝑀) = (1...𝑁)) |
22 | | f1oeq2 5245 |
. . . . . 6
⊢
((1...𝑀) =
(1...𝑁) → ((◡𝑓 ∘ 𝐾):(1...𝑀)–1-1-onto→(1...𝑀) ↔ (◡𝑓 ∘ 𝐾):(1...𝑁)–1-1-onto→(1...𝑀))) |
23 | 21, 22 | syl 14 |
. . . . 5
⊢ (𝜑 → ((◡𝑓 ∘ 𝐾):(1...𝑀)–1-1-onto→(1...𝑀) ↔ (◡𝑓 ∘ 𝐾):(1...𝑁)–1-1-onto→(1...𝑀))) |
24 | 16, 23 | mpbird 165 |
. . . 4
⊢ (𝜑 → (◡𝑓 ∘ 𝐾):(1...𝑀)–1-1-onto→(1...𝑀)) |
25 | | elnnuz 9055 |
. . . . 5
⊢ (𝑚 ∈ ℕ ↔ 𝑚 ∈
(ℤ≥‘1)) |
26 | | simplr 497 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → 𝑚 ∈ ℕ) |
27 | | elfzle2 9442 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ (1...𝑀) → 𝑚 ≤ 𝑀) |
28 | 27 | adantl 271 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → 𝑚 ≤ 𝑀) |
29 | 28 | iftrued 3400 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → if(𝑚 ≤ 𝑀, ⦋(𝑓‘𝑚) / 𝑘⦌𝐵, 0) = ⦋(𝑓‘𝑚) / 𝑘⦌𝐵) |
30 | | f1of 5253 |
. . . . . . . . . . . . 13
⊢ (𝑓:(1...𝑀)–1-1-onto→𝐴 → 𝑓:(1...𝑀)⟶𝐴) |
31 | 11, 30 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑓:(1...𝑀)⟶𝐴) |
32 | 31 | ffvelrnda 5434 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑀)) → (𝑓‘𝑚) ∈ 𝐴) |
33 | 18 | ralrimiva 2446 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
34 | 33 | adantr 270 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑀)) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
35 | | nfcsb1v 2963 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘⦋(𝑓‘𝑚) / 𝑘⦌𝐵 |
36 | 35 | nfel1 2239 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ∈ ℂ |
37 | | csbeq1a 2941 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑓‘𝑚) → 𝐵 = ⦋(𝑓‘𝑚) / 𝑘⦌𝐵) |
38 | 37 | eleq1d 2156 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑓‘𝑚) → (𝐵 ∈ ℂ ↔ ⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ∈ ℂ)) |
39 | 36, 38 | rspc 2716 |
. . . . . . . . . . 11
⊢ ((𝑓‘𝑚) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ∈ ℂ)) |
40 | 32, 34, 39 | sylc 61 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑀)) → ⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ∈ ℂ) |
41 | 40 | adantlr 461 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → ⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ∈ ℂ) |
42 | 29, 41 | eqeltrd 2164 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → if(𝑚 ≤ 𝑀, ⦋(𝑓‘𝑚) / 𝑘⦌𝐵, 0) ∈ ℂ) |
43 | | breq1 3848 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (𝑛 ≤ 𝑀 ↔ 𝑚 ≤ 𝑀)) |
44 | | fveq2 5305 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑚 → (𝑓‘𝑛) = (𝑓‘𝑚)) |
45 | 44 | csbeq1d 2939 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑚) / 𝑘⦌𝐵) |
46 | 43, 45 | ifbieq1d 3413 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → if(𝑛 ≤ 𝑀, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0) = if(𝑚 ≤ 𝑀, ⦋(𝑓‘𝑚) / 𝑘⦌𝐵, 0)) |
47 | | isummolem3.g |
. . . . . . . . 9
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) |
48 | 46, 47 | fvmptg 5380 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℕ ∧ if(𝑚 ≤ 𝑀, ⦋(𝑓‘𝑚) / 𝑘⦌𝐵, 0) ∈ ℂ) → (𝐺‘𝑚) = if(𝑚 ≤ 𝑀, ⦋(𝑓‘𝑚) / 𝑘⦌𝐵, 0)) |
49 | 26, 42, 48 | syl2anc 403 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → (𝐺‘𝑚) = if(𝑚 ≤ 𝑀, ⦋(𝑓‘𝑚) / 𝑘⦌𝐵, 0)) |
50 | 49, 42 | eqeltrd 2164 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → (𝐺‘𝑚) ∈ ℂ) |
51 | | simplr 497 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑚 ∈
ℕ) |
52 | 8 | ad2antrr 472 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑀 ∈ ℕ) |
53 | 52 | nnzd 8867 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑀 ∈ ℤ) |
54 | | eluzp1l 9043 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤ ∧ 𝑚 ∈
(ℤ≥‘(𝑀 + 1))) → 𝑀 < 𝑚) |
55 | 53, 54 | sylancom 411 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑀 < 𝑚) |
56 | 51 | nnzd 8867 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑚 ∈
ℤ) |
57 | | zltnle 8796 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑀 < 𝑚 ↔ ¬ 𝑚 ≤ 𝑀)) |
58 | 53, 56, 57 | syl2anc 403 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑀 < 𝑚 ↔ ¬ 𝑚 ≤ 𝑀)) |
59 | 55, 58 | mpbid 145 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → ¬ 𝑚 ≤ 𝑀) |
60 | 59 | iffalsed 3403 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → if(𝑚 ≤ 𝑀, ⦋(𝑓‘𝑚) / 𝑘⦌𝐵, 0) = 0) |
61 | | 0cn 7480 |
. . . . . . . . 9
⊢ 0 ∈
ℂ |
62 | 60, 61 | syl6eqel 2178 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → if(𝑚 ≤ 𝑀, ⦋(𝑓‘𝑚) / 𝑘⦌𝐵, 0) ∈ ℂ) |
63 | 51, 62, 48 | syl2anc 403 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐺‘𝑚) = if(𝑚 ≤ 𝑀, ⦋(𝑓‘𝑚) / 𝑘⦌𝐵, 0)) |
64 | 63, 62 | eqeltrd 2164 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐺‘𝑚) ∈ ℂ) |
65 | | nnsplit 9548 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℕ → ℕ =
((1...𝑀) ∪
(ℤ≥‘(𝑀 + 1)))) |
66 | 8, 65 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → ℕ = ((1...𝑀) ∪
(ℤ≥‘(𝑀 + 1)))) |
67 | 66 | eleq2d 2157 |
. . . . . . . 8
⊢ (𝜑 → (𝑚 ∈ ℕ ↔ 𝑚 ∈ ((1...𝑀) ∪ (ℤ≥‘(𝑀 + 1))))) |
68 | 67 | biimpa 290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ((1...𝑀) ∪ (ℤ≥‘(𝑀 + 1)))) |
69 | | elun 3141 |
. . . . . . 7
⊢ (𝑚 ∈ ((1...𝑀) ∪ (ℤ≥‘(𝑀 + 1))) ↔ (𝑚 ∈ (1...𝑀) ∨ 𝑚 ∈ (ℤ≥‘(𝑀 + 1)))) |
70 | 68, 69 | sylib 120 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚 ∈ (1...𝑀) ∨ 𝑚 ∈ (ℤ≥‘(𝑀 + 1)))) |
71 | 50, 64, 70 | mpjaodan 747 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐺‘𝑚) ∈ ℂ) |
72 | 25, 71 | sylan2br 282 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
→ (𝐺‘𝑚) ∈
ℂ) |
73 | 19 | oveq2d 5668 |
. . . . . . . . . 10
⊢ (𝜑 → (1...𝑁) = (1...𝑀)) |
74 | 73 | eleq2d 2157 |
. . . . . . . . 9
⊢ (𝜑 → (𝑚 ∈ (1...𝑁) ↔ 𝑚 ∈ (1...𝑀))) |
75 | 74 | adantr 270 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚 ∈ (1...𝑁) ↔ 𝑚 ∈ (1...𝑀))) |
76 | 75 | pm5.32i 442 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) ↔ ((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀))) |
77 | | simplr 497 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → 𝑚 ∈ ℕ) |
78 | | elfzle2 9442 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ (1...𝑁) → 𝑚 ≤ 𝑁) |
79 | 78 | adantl 271 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → 𝑚 ≤ 𝑁) |
80 | 79 | iftrued 3400 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → if(𝑚 ≤ 𝑁, ⦋(𝐾‘𝑚) / 𝑘⦌𝐵, 0) = ⦋(𝐾‘𝑚) / 𝑘⦌𝐵) |
81 | | f1of 5253 |
. . . . . . . . . . . . . 14
⊢ (𝐾:(1...𝑁)–1-1-onto→𝐴 → 𝐾:(1...𝑁)⟶𝐴) |
82 | 14, 81 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾:(1...𝑁)⟶𝐴) |
83 | 82 | ffvelrnda 5434 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑁)) → (𝐾‘𝑚) ∈ 𝐴) |
84 | 33 | adantr 270 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑁)) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
85 | | nfcsb1v 2963 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋(𝐾‘𝑚) / 𝑘⦌𝐵 |
86 | 85 | nfel1 2239 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘⦋(𝐾‘𝑚) / 𝑘⦌𝐵 ∈ ℂ |
87 | | csbeq1a 2941 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝐾‘𝑚) → 𝐵 = ⦋(𝐾‘𝑚) / 𝑘⦌𝐵) |
88 | 87 | eleq1d 2156 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝐾‘𝑚) → (𝐵 ∈ ℂ ↔ ⦋(𝐾‘𝑚) / 𝑘⦌𝐵 ∈ ℂ)) |
89 | 86, 88 | rspc 2716 |
. . . . . . . . . . . 12
⊢ ((𝐾‘𝑚) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋(𝐾‘𝑚) / 𝑘⦌𝐵 ∈ ℂ)) |
90 | 83, 84, 89 | sylc 61 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑁)) → ⦋(𝐾‘𝑚) / 𝑘⦌𝐵 ∈ ℂ) |
91 | 90 | adantlr 461 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → ⦋(𝐾‘𝑚) / 𝑘⦌𝐵 ∈ ℂ) |
92 | 80, 91 | eqeltrd 2164 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → if(𝑚 ≤ 𝑁, ⦋(𝐾‘𝑚) / 𝑘⦌𝐵, 0) ∈ ℂ) |
93 | | breq1 3848 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑚 → (𝑛 ≤ 𝑁 ↔ 𝑚 ≤ 𝑁)) |
94 | | fveq2 5305 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑚 → (𝐾‘𝑛) = (𝐾‘𝑚)) |
95 | 94 | csbeq1d 2939 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑚 → ⦋(𝐾‘𝑛) / 𝑘⦌𝐵 = ⦋(𝐾‘𝑚) / 𝑘⦌𝐵) |
96 | 93, 95 | ifbieq1d 3413 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → if(𝑛 ≤ 𝑁, ⦋(𝐾‘𝑛) / 𝑘⦌𝐵, 0) = if(𝑚 ≤ 𝑁, ⦋(𝐾‘𝑚) / 𝑘⦌𝐵, 0)) |
97 | | isummolem3.4 |
. . . . . . . . . 10
⊢ 𝐻 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑁, ⦋(𝐾‘𝑛) / 𝑘⦌𝐵, 0)) |
98 | 96, 97 | fvmptg 5380 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ℕ ∧ if(𝑚 ≤ 𝑁, ⦋(𝐾‘𝑚) / 𝑘⦌𝐵, 0) ∈ ℂ) → (𝐻‘𝑚) = if(𝑚 ≤ 𝑁, ⦋(𝐾‘𝑚) / 𝑘⦌𝐵, 0)) |
99 | 77, 92, 98 | syl2anc 403 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → (𝐻‘𝑚) = if(𝑚 ≤ 𝑁, ⦋(𝐾‘𝑚) / 𝑘⦌𝐵, 0)) |
100 | 99, 92 | eqeltrd 2164 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → (𝐻‘𝑚) ∈ ℂ) |
101 | 76, 100 | sylbir 133 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → (𝐻‘𝑚) ∈ ℂ) |
102 | 19 | breq2d 3857 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑚 ≤ 𝑁 ↔ 𝑚 ≤ 𝑀)) |
103 | 102 | notbid 627 |
. . . . . . . . . . . 12
⊢ (𝜑 → (¬ 𝑚 ≤ 𝑁 ↔ ¬ 𝑚 ≤ 𝑀)) |
104 | 103 | ad2antrr 472 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → (¬ 𝑚 ≤ 𝑁 ↔ ¬ 𝑚 ≤ 𝑀)) |
105 | 59, 104 | mpbird 165 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → ¬ 𝑚 ≤ 𝑁) |
106 | 105 | iffalsed 3403 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → if(𝑚 ≤ 𝑁, ⦋(𝐾‘𝑚) / 𝑘⦌𝐵, 0) = 0) |
107 | 106, 61 | syl6eqel 2178 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → if(𝑚 ≤ 𝑁, ⦋(𝐾‘𝑚) / 𝑘⦌𝐵, 0) ∈ ℂ) |
108 | 51, 107, 98 | syl2anc 403 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐻‘𝑚) = if(𝑚 ≤ 𝑁, ⦋(𝐾‘𝑚) / 𝑘⦌𝐵, 0)) |
109 | 108, 107 | eqeltrd 2164 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐻‘𝑚) ∈ ℂ) |
110 | 101, 109,
70 | mpjaodan 747 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ∈ ℂ) |
111 | 25, 110 | sylan2br 282 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
→ (𝐻‘𝑚) ∈
ℂ) |
112 | | f1oeq2 5245 |
. . . . . . . . . . . 12
⊢
((1...𝑀) =
(1...𝑁) → (𝐾:(1...𝑀)–1-1-onto→𝐴 ↔ 𝐾:(1...𝑁)–1-1-onto→𝐴)) |
113 | 21, 112 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐾:(1...𝑀)–1-1-onto→𝐴 ↔ 𝐾:(1...𝑁)–1-1-onto→𝐴)) |
114 | 14, 113 | mpbird 165 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾:(1...𝑀)–1-1-onto→𝐴) |
115 | | f1of 5253 |
. . . . . . . . . 10
⊢ (𝐾:(1...𝑀)–1-1-onto→𝐴 → 𝐾:(1...𝑀)⟶𝐴) |
116 | 114, 115 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾:(1...𝑀)⟶𝐴) |
117 | | fvco3 5375 |
. . . . . . . . 9
⊢ ((𝐾:(1...𝑀)⟶𝐴 ∧ 𝑖 ∈ (1...𝑀)) → ((◡𝑓 ∘ 𝐾)‘𝑖) = (◡𝑓‘(𝐾‘𝑖))) |
118 | 116, 117 | sylan 277 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((◡𝑓 ∘ 𝐾)‘𝑖) = (◡𝑓‘(𝐾‘𝑖))) |
119 | 118 | fveq2d 5309 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) = (𝑓‘(◡𝑓‘(𝐾‘𝑖)))) |
120 | 11 | adantr 270 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝑓:(1...𝑀)–1-1-onto→𝐴) |
121 | 116 | ffvelrnda 5434 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐾‘𝑖) ∈ 𝐴) |
122 | | f1ocnvfv2 5557 |
. . . . . . . 8
⊢ ((𝑓:(1...𝑀)–1-1-onto→𝐴 ∧ (𝐾‘𝑖) ∈ 𝐴) → (𝑓‘(◡𝑓‘(𝐾‘𝑖))) = (𝐾‘𝑖)) |
123 | 120, 121,
122 | syl2anc 403 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑓‘(◡𝑓‘(𝐾‘𝑖))) = (𝐾‘𝑖)) |
124 | 119, 123 | eqtr2d 2121 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐾‘𝑖) = (𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖))) |
125 | 124 | csbeq1d 2939 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ⦋(𝐾‘𝑖) / 𝑘⦌𝐵 = ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵) |
126 | | elfznn 9468 |
. . . . . . 7
⊢ (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℕ) |
127 | | elfzle2 9442 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (1...𝑀) → 𝑖 ≤ 𝑀) |
128 | 127 | adantl 271 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝑖 ≤ 𝑀) |
129 | 20 | breq2d 3857 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑖 ≤ 𝑀 ↔ 𝑖 ≤ 𝑁)) |
130 | 129 | adantr 270 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑖 ≤ 𝑀 ↔ 𝑖 ≤ 𝑁)) |
131 | 128, 130 | mpbid 145 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝑖 ≤ 𝑁) |
132 | 131 | iftrued 3400 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → if(𝑖 ≤ 𝑁, ⦋(𝐾‘𝑖) / 𝑘⦌𝐵, 0) = ⦋(𝐾‘𝑖) / 𝑘⦌𝐵) |
133 | 33 | adantr 270 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
134 | | nfcsb1v 2963 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘⦋(𝐾‘𝑖) / 𝑘⦌𝐵 |
135 | 134 | nfel1 2239 |
. . . . . . . . . 10
⊢
Ⅎ𝑘⦋(𝐾‘𝑖) / 𝑘⦌𝐵 ∈ ℂ |
136 | | csbeq1a 2941 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝐾‘𝑖) → 𝐵 = ⦋(𝐾‘𝑖) / 𝑘⦌𝐵) |
137 | 136 | eleq1d 2156 |
. . . . . . . . . 10
⊢ (𝑘 = (𝐾‘𝑖) → (𝐵 ∈ ℂ ↔ ⦋(𝐾‘𝑖) / 𝑘⦌𝐵 ∈ ℂ)) |
138 | 135, 137 | rspc 2716 |
. . . . . . . . 9
⊢ ((𝐾‘𝑖) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋(𝐾‘𝑖) / 𝑘⦌𝐵 ∈ ℂ)) |
139 | 121, 133,
138 | sylc 61 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ⦋(𝐾‘𝑖) / 𝑘⦌𝐵 ∈ ℂ) |
140 | 132, 139 | eqeltrd 2164 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → if(𝑖 ≤ 𝑁, ⦋(𝐾‘𝑖) / 𝑘⦌𝐵, 0) ∈ ℂ) |
141 | | breq1 3848 |
. . . . . . . . 9
⊢ (𝑛 = 𝑖 → (𝑛 ≤ 𝑁 ↔ 𝑖 ≤ 𝑁)) |
142 | | fveq2 5305 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑖 → (𝐾‘𝑛) = (𝐾‘𝑖)) |
143 | 142 | csbeq1d 2939 |
. . . . . . . . 9
⊢ (𝑛 = 𝑖 → ⦋(𝐾‘𝑛) / 𝑘⦌𝐵 = ⦋(𝐾‘𝑖) / 𝑘⦌𝐵) |
144 | 141, 143 | ifbieq1d 3413 |
. . . . . . . 8
⊢ (𝑛 = 𝑖 → if(𝑛 ≤ 𝑁, ⦋(𝐾‘𝑛) / 𝑘⦌𝐵, 0) = if(𝑖 ≤ 𝑁, ⦋(𝐾‘𝑖) / 𝑘⦌𝐵, 0)) |
145 | 144, 97 | fvmptg 5380 |
. . . . . . 7
⊢ ((𝑖 ∈ ℕ ∧ if(𝑖 ≤ 𝑁, ⦋(𝐾‘𝑖) / 𝑘⦌𝐵, 0) ∈ ℂ) → (𝐻‘𝑖) = if(𝑖 ≤ 𝑁, ⦋(𝐾‘𝑖) / 𝑘⦌𝐵, 0)) |
146 | 126, 140,
145 | syl2an2 561 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐻‘𝑖) = if(𝑖 ≤ 𝑁, ⦋(𝐾‘𝑖) / 𝑘⦌𝐵, 0)) |
147 | 146, 132 | eqtrd 2120 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐻‘𝑖) = ⦋(𝐾‘𝑖) / 𝑘⦌𝐵) |
148 | | f1of 5253 |
. . . . . . . . . 10
⊢ ((◡𝑓 ∘ 𝐾):(1...𝑀)–1-1-onto→(1...𝑀) → (◡𝑓 ∘ 𝐾):(1...𝑀)⟶(1...𝑀)) |
149 | 24, 148 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → (◡𝑓 ∘ 𝐾):(1...𝑀)⟶(1...𝑀)) |
150 | 149 | ffvelrnda 5434 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((◡𝑓 ∘ 𝐾)‘𝑖) ∈ (1...𝑀)) |
151 | | elfznn 9468 |
. . . . . . . 8
⊢ (((◡𝑓 ∘ 𝐾)‘𝑖) ∈ (1...𝑀) → ((◡𝑓 ∘ 𝐾)‘𝑖) ∈ ℕ) |
152 | 150, 151 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((◡𝑓 ∘ 𝐾)‘𝑖) ∈ ℕ) |
153 | | elfzle2 9442 |
. . . . . . . . . . 11
⊢ (((◡𝑓 ∘ 𝐾)‘𝑖) ∈ (1...𝑀) → ((◡𝑓 ∘ 𝐾)‘𝑖) ≤ 𝑀) |
154 | 150, 153 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((◡𝑓 ∘ 𝐾)‘𝑖) ≤ 𝑀) |
155 | 154 | iftrued 3400 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → if(((◡𝑓 ∘ 𝐾)‘𝑖) ≤ 𝑀, ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵, 0) = ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵) |
156 | 155, 125 | eqtr4d 2123 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → if(((◡𝑓 ∘ 𝐾)‘𝑖) ≤ 𝑀, ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵, 0) = ⦋(𝐾‘𝑖) / 𝑘⦌𝐵) |
157 | 156, 139 | eqeltrd 2164 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → if(((◡𝑓 ∘ 𝐾)‘𝑖) ≤ 𝑀, ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵, 0) ∈ ℂ) |
158 | | breq1 3848 |
. . . . . . . . 9
⊢ (𝑛 = ((◡𝑓 ∘ 𝐾)‘𝑖) → (𝑛 ≤ 𝑀 ↔ ((◡𝑓 ∘ 𝐾)‘𝑖) ≤ 𝑀)) |
159 | | fveq2 5305 |
. . . . . . . . . 10
⊢ (𝑛 = ((◡𝑓 ∘ 𝐾)‘𝑖) → (𝑓‘𝑛) = (𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖))) |
160 | 159 | csbeq1d 2939 |
. . . . . . . . 9
⊢ (𝑛 = ((◡𝑓 ∘ 𝐾)‘𝑖) → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵) |
161 | 158, 160 | ifbieq1d 3413 |
. . . . . . . 8
⊢ (𝑛 = ((◡𝑓 ∘ 𝐾)‘𝑖) → if(𝑛 ≤ 𝑀, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0) = if(((◡𝑓 ∘ 𝐾)‘𝑖) ≤ 𝑀, ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵, 0)) |
162 | 161, 47 | fvmptg 5380 |
. . . . . . 7
⊢ ((((◡𝑓 ∘ 𝐾)‘𝑖) ∈ ℕ ∧ if(((◡𝑓 ∘ 𝐾)‘𝑖) ≤ 𝑀, ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵, 0) ∈ ℂ) → (𝐺‘((◡𝑓 ∘ 𝐾)‘𝑖)) = if(((◡𝑓 ∘ 𝐾)‘𝑖) ≤ 𝑀, ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵, 0)) |
163 | 152, 157,
162 | syl2anc 403 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐺‘((◡𝑓 ∘ 𝐾)‘𝑖)) = if(((◡𝑓 ∘ 𝐾)‘𝑖) ≤ 𝑀, ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵, 0)) |
164 | 163, 155 | eqtrd 2120 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐺‘((◡𝑓 ∘ 𝐾)‘𝑖)) = ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵) |
165 | 125, 147,
164 | 3eqtr4d 2130 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐻‘𝑖) = (𝐺‘((◡𝑓 ∘ 𝐾)‘𝑖))) |
166 | 2, 4, 6, 10, 24, 72, 111, 165 | seq3f1o 9933 |
. . 3
⊢ (𝜑 → (seq1( + , 𝐻)‘𝑀) = (seq1( + , 𝐺)‘𝑀)) |
167 | | 1zzd 8777 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℤ) |
168 | 167, 111 | iseqseq3 9902 |
. . . 4
⊢ (𝜑 → seq1( + , 𝐻, ℂ) = seq1( + , 𝐻)) |
169 | 168 | fveq1d 5307 |
. . 3
⊢ (𝜑 → (seq1( + , 𝐻, ℂ)‘𝑀) = (seq1( + , 𝐻)‘𝑀)) |
170 | 167, 72 | iseqseq3 9902 |
. . . 4
⊢ (𝜑 → seq1( + , 𝐺, ℂ) = seq1( + , 𝐺)) |
171 | 170 | fveq1d 5307 |
. . 3
⊢ (𝜑 → (seq1( + , 𝐺, ℂ)‘𝑀) = (seq1( + , 𝐺)‘𝑀)) |
172 | 166, 169,
171 | 3eqtr4d 2130 |
. 2
⊢ (𝜑 → (seq1( + , 𝐻, ℂ)‘𝑀) = (seq1( + , 𝐺, ℂ)‘𝑀)) |
173 | 20 | fveq2d 5309 |
. 2
⊢ (𝜑 → (seq1( + , 𝐻, ℂ)‘𝑀) = (seq1( + , 𝐻, ℂ)‘𝑁)) |
174 | 172, 173 | eqtr3d 2122 |
1
⊢ (𝜑 → (seq1( + , 𝐺, ℂ)‘𝑀) = (seq1( + , 𝐻, ℂ)‘𝑁)) |