| Intuitionistic Logic Explorer |
This is the Unicode version. Change to GIF version |
||
| Symbol | ASCII |
| ( | ( |
| ) | ) |
| → | -> |
| ¬ | -. |
| wff | wff |
| ⊢ | |- |
| & | & |
| ⇒ | => |
| 𝜑 | ph |
| 𝜓 | ps |
| 𝜒 | ch |
| 𝜃 | th |
| 𝜏 | ta |
| 𝜂 | et |
| 𝜁 | ze |
| 𝜎 | si |
| 𝜌 | rh |
| 𝜇 | mu |
| 𝜆 | la |
| 𝜅 | ka |
| ∧ | /\ |
| ↔ | <-> |
| ∨ | \/ |
| STAB | STAB |
| DECID | DECID |
| ∀ | A. |
| setvar | setvar |
| 𝑥 | x |
| class | class |
| = | = |
| 𝐴 | A |
| 𝐵 | B |
| ⊤ | T. |
| 𝑦 | y |
| ⊥ | F. |
| ⊻ | \/_ |
| 𝑧 | z |
| 𝑤 | w |
| 𝑣 | v |
| 𝑢 | u |
| 𝑡 | t |
| Ⅎ | F/ |
| ∃ | E. |
| [ | [ |
| / | / |
| ] | ] |
| 𝑓 | f |
| 𝑔 | g |
| 𝑠 | s |
| ∃! | E! |
| ∃* | E* |
| ∈ | e. |
| { | { |
| ∣ | | |
| } | } |
| ∧ | ./\ |
| ∨ | .\/ |
| ≤ | .<_ |
| < | .< |
| + | .+ |
| − | .- |
| × | .X. |
| / | ./ |
| ↑ | .^ |
| 0 | .0. |
| 1 | .1. |
| ∥ | .|| |
| # | .# |
| ∼ | .~ |
| ⊥ | ._|_ |
| ⨣ | .+^ |
| ✚ | .+b |
| ⊕ | .(+) |
| ∗ | .* |
| · | .x. |
| ∙ | .xb |
| , | ., |
| ⊗ | .(x) |
| ⚬ | .o. |
| 𝟎 | .0b |
| 𝐶 | C |
| 𝐷 | D |
| 𝑃 | P |
| 𝑄 | Q |
| 𝑅 | R |
| 𝑆 | S |
| 𝑇 | T |
| 𝑈 | U |
| 𝑒 | e |
| ℎ | h |
| 𝑖 | i |
| 𝑗 | j |
| 𝑘 | k |
| 𝑚 | m |
| 𝑛 | n |
| 𝑜 | o |
| 𝐸 | E |
| 𝐹 | F |
| 𝐺 | G |
| 𝐻 | H |
| 𝐼 | I |
| 𝐽 | J |
| 𝐾 | K |
| 𝐿 | L |
| 𝑀 | M |
| 𝑁 | N |
| 𝑉 | V |
| 𝑊 | W |
| 𝑋 | X |
| 𝑌 | Y |
| 𝑍 | Z |
| 𝑂 | O |
| 𝑟 | r |
| 𝑞 | q |
| 𝑝 | p |
| 𝑎 | a |
| 𝑏 | b |
| 𝑐 | c |
| 𝑑 | d |
| 𝑙 | l |
| Ⅎ | F/_ |
| ≠ | =/= |
| ∉ | e/ |
| V | _V |
| CondEq | CondEq |
| [ | [. |
| ] | ]. |
| ⦋ | [_ |
| ⦌ | ]_ |
| ∖ | \ |
| ∪ | u. |
| ∩ | i^i |
| ⊆ | C_ |
| ∅ | (/) |
| , | , |
| if | if |
| 𝒫 | ~P |
| 〈 | <. |
| 〉 | >. |
| ∪ | U. |
| ∩ | |^| |
| ∪ | U_ |
| ∩ | |^|_ |
| Disj | Disj_ |
| ↦ | |-> |
| Tr | Tr |
| EXMID | EXMID |
| E | _E |
| I | _I |
| Po | Po |
| Or | Or |
| FrFor | FrFor |
| Fr | Fr |
| Se | Se |
| We | We |
| Ord | Ord |
| On | On |
| Lim | Lim |
| suc | suc |
| ω | _om |
| × | X. |
| ◡ | `' |
| dom | dom |
| ran | ran |
| ↾ | |` |
| “ | " |
| ∘ | o. |
| Rel | Rel |
| ℩ | iota |
| : | : |
| Fun | Fun |
| Fn | Fn |
| ⟶ | --> |
| –1-1→ | -1-1-> |
| –onto→ | -onto-> |
| –1-1-onto→ | -1-1-onto-> |
| ‘ | ` |
| Isom | Isom |
| ℩ | iota_ |
| ∘𝑓 | oF |
| ∘𝑟 | oR |
| 1st | 1st |
| 2nd | 2nd |
| tpos | tpos |
| Smo | Smo |
| recs | recs |
| rec | rec |
| frec | frec |
| 1o | 1o |
| 2o | 2o |
| 3o | 3o |
| 4o | 4o |
| +o | +o |
| ·o | .o |
| ↑o | ^oi |
| Er | Er |
| / | /. |
| ↑𝑚 | ^m |
| ↑pm | ^pm |
| X | X_ |
| ≈ | ~~ |
| ≼ | ~<_ |
| Fin | Fin |
| fi | fi |
| sup | sup |
| inf | inf |
| ⊔ | |_| |
| inl | inl |
| inr | inr |
| case | case |
| ⊔d | |_|d |
| ℕ∞ | NN+oo |
| Omni | Omni |
| Markov | Markov |
| WOmni | WOmni |
| card | card |
| CHOICE | CHOICE |
| Ap | Ap |
| TAp | TAp |
| CCHOICE | CCHOICE |
| N | N. |
| +N | +N |
| ·N | .N |
| <N | <N |
| +pQ | +pQ |
| ·pQ | .pQ |
| <pQ | <pQ |
| ~Q | ~Q |
| Q | Q. |
| 1Q | 1Q |
| +Q | +Q |
| ·Q | .Q |
| *Q | *Q |
| <Q | <Q |
| ~Q0 | ~Q0 |
| Q0 | Q0. |
| 0Q0 | 0Q0 |
| +Q0 | +Q0 |
| ·Q0 | .Q0 |
| P | P. |
| 1P | 1P |
| +P | +P. |
| ·P | .P. |
| <P | <P |
| ~R | ~R |
| R | R. |
| 0R | 0R |
| 1R | 1R |
| -1R | -1R |
| +R | +R |
| ·R | .R |
| <R | <R |
| <ℝ | <RR |
| ℂ | CC |
| ℝ | RR |
| 0 | 0 |
| 1 | 1 |
| i | _i |
| + | + |
| · | x. |
| ≤ | <_ |
| +∞ | +oo |
| -∞ | -oo |
| ℝ* | RR* |
| < | < |
| − | - |
| - | -u |
| #ℝ | #RR |
| # | =//= |
| ℕ | NN |
| 2 | 2 |
| 3 | 3 |
| 4 | 4 |
| 5 | 5 |
| 6 | 6 |
| 7 | 7 |
| 8 | 8 |
| 9 | 9 |
| ℕ0 | NN0 |
| ℕ0* | NN0* |
| ℤ | ZZ |
| ; | ; |
| ℤ≥ | ZZ>= |
| ℚ | |
| ℝ+ | RR+ |
| -𝑒 | -e |
| +𝑒 | +e |
| ·e | *e |
| (,) | (,) |
| (,] | (,] |
| [,) | [,) |
| [,] | [,] |
| ... | ... |
| ..^ | ..^ |
| ⌊ | |_ |
| ⌈ | |^ |
| mod | mod |
| ≡ | == |
| seq | seq |
| ↑ | ^ |
| ! | ! |
| C | _C |
| ♯ | # |
| Word | Word |
| shift | shift |
| ℜ | Re |
| ℑ | Im |
| ∗ | * |
| √ | sqrt |
| abs | abs |
| ± | +- |
| ⇝ | ~~> |
| Σ | sum_ |
| ∏ | prod_ |
| exp | exp |
| e | _e |
| sin | sin |
| cos | cos |
| tan | tan |
| π | _pi |
| τ | _tau |
| ∥ | || |
| bits | bits |
| gcd | gcd |
| lcm | lcm |
| ℙ | Prime |
| numer | numer |
| denom | denom |
| odℤ | odZ |
| ϕ | phi |
| pCnt | pCnt |
| ℤ[i] | Z[i] |
| Struct | Struct |
| ndx | ndx |
| sSet | sSet |
| Slot | Slot |
| Base | Base |
| ↾s | |`s |
| +g | +g |
| .r | .r |
| *𝑟 | *r |
| Scalar | Scalar |
| ·𝑠 | .s |
| ·𝑖 | .i |
| TopSet | TopSet |
| le | le |
| oc | oc |
| dist | dist |
| UnifSet | UnifSet |
| Hom | Hom |
| comp | comp |
| ↾t | |`t |
| TopOpen | TopOpen |
| topGen | topGen |
| ∏t | Xt_ |
| 0g | 0g |
| Σg | gsum |
| Xs | Xs_ |
| ↑s | ^s |
| “s | "s |
| /s | /s |
| ×s | Xs. |
| +𝑓 | +f |
| Mgm | Mgm |
| Smgrp | Smgrp |
| Mnd | Mnd |
| MndHom | MndHom |
| SubMnd | SubMnd |
| Grp | Grp |
| invg | invg |
| -g | -g |
| .g | .g |
| ~QG | ~QG |
| SubGrp | SubGrp |
| NrmSGrp | NrmSGrp |
| GrpHom | GrpHom |
| CMnd | CMnd |
| Abel | Abel |
| mulGrp | mulGrp |
| Rng | Rng |
| 1r | 1r |
| SRing | SRing |
| Ring | Ring |
| CRing | CRing |
| oppr | oppR |
| ∥r | ||r |
| Unit | Unit |
| Irred | Irred |
| invr | invr |
| /r | /r |
| RingHom | RingHom |
| RingIso | RingIso |
| NzRing | NzRing |
| LRing | LRing |
| SubRng | SubRng |
| SubRing | SubRing |
| RingSpan | RingSpan |
| RLReg | RLReg |
| Domn | Domn |
| IDomn | IDomn |
| #r | #r |
| LMod | LMod |
| ·sf | .sf |
| LSubSp | LSubSp |
| LSpan | LSpan |
| subringAlg | subringAlg |
| ringLMod | ringLMod |
| LIdeal | LIdeal |
| RSpan | RSpan |
| 2Ideal | 2Ideal |
| PsMet | PsMet |
| ∞Met | *Met |
| Met | Met |
| ball | ball |
| fBas | fBas |
| filGen | filGen |
| MetOpen | MetOpen |
| metUnif | metUnif |
| ℂfld | CCfld |
| ℤring | ZZring |
| ℤRHom | ZRHom |
| ℤMod | ZMod |
| ℤ/nℤ | Z/nZ |
| mPwSer | mPwSer |
| Top | Top |
| TopOn | TopOn |
| TopSp | TopSp |
| TopBases | TopBases |
| int | int |
| cls | cls |
| Clsd | Clsd |
| nei | nei |
| Cn | Cn |
| CnP | CnP |
| ⇝𝑡 | ~~>t |
| ×t | tX |
| Homeo | Homeo |
| ∞MetSp | *MetSp |
| MetSp | MetSp |
| toMetSp | toMetSp |
| –cn→ | -cn-> |
| limℂ | limCC |
| D | _D |
| Poly | Poly |
| Xp | Xp |
| log | log |
| ↑𝑐 | ^c |
| logb | logb |
| σ | sigma |
| /L | /L |
| DECIDin | DECID_in |
| Δ0 | Delta0 |
| BOUNDED | Bdd |
| BOUNDED | Bdd_ |
| Ind | Ind |
| ∀! | A! |
| Copyright terms: Public domain | W3C validator |