![]() |
Intuitionistic Logic Explorer |
This is the Unicode version. Change to GIF version |
Symbol | ASCII |
( | ( |
) | ) |
β | -> |
Β¬ | -. |
wff | wff |
β’ | |- |
& | & |
β | => |
π | ph |
π | ps |
π | ch |
π | th |
π | ta |
π | et |
π | ze |
π | si |
π | rh |
π | mu |
π | la |
π | ka |
β§ | /\ |
β | <-> |
β¨ | \/ |
STAB | STAB |
DECID | DECID |
β | A. |
setvar | setvar |
π₯ | x |
class | class |
= | = |
π΄ | A |
π΅ | B |
β€ | T. |
π¦ | y |
β₯ | F. |
β» | \/_ |
π§ | z |
π€ | w |
π£ | v |
π’ | u |
π‘ | t |
β² | F/ |
β | E. |
[ | [ |
/ | / |
] | ] |
π | f |
π | g |
π | s |
β! | E! |
β* | E* |
β | e. |
{ | { |
β£ | | |
} | } |
β§ | ./\ |
β¨ | .\/ |
β€ | .<_ |
< | .< |
+ | .+ |
β | .- |
Γ | .X. |
/ | ./ |
β | .^ |
0 | .0. |
1 | .1. |
β₯ | .|| |
# | .# |
βΌ | .~ |
β₯ | ._|_ |
⨣ | .+^ |
β | .+b |
β | .(+) |
β | .* |
Β· | .x. |
β | .xb |
, | ., |
β | .(x) |
β¬ | .o. |
π | .0b |
πΆ | C |
π· | D |
π | P |
π | Q |
π | R |
π | S |
π | T |
π | U |
π | e |
β | h |
π | i |
π | j |
π | k |
π | m |
π | n |
π | o |
πΈ | E |
πΉ | F |
πΊ | G |
π» | H |
πΌ | I |
π½ | J |
πΎ | K |
πΏ | L |
π | M |
π | N |
π | V |
π | W |
π | X |
π | Y |
π | Z |
π | O |
π | r |
π | q |
π | p |
π | a |
π | b |
π | c |
π | d |
π | l |
β² | F/_ |
β | =/= |
β | e/ |
V | _V |
CondEq | CondEq |
[ | [. |
] | ]. |
β¦ | [_ |
β¦ | ]_ |
β | \ |
βͺ | u. |
β© | i^i |
β | C_ |
β | (/) |
, | , |
if | if |
π« | ~P |
β¨ | <. |
β© | >. |
βͺ | U. |
β© | |^| |
βͺ | U_ |
β© | |^|_ |
Disj | Disj_ |
β¦ | |-> |
Tr | Tr |
EXMID | EXMID |
E | _E |
I | _I |
Po | Po |
Or | Or |
FrFor | FrFor |
Fr | Fr |
Se | Se |
We | We |
Ord | Ord |
On | On |
Lim | Lim |
suc | suc |
Ο | _om |
Γ | X. |
β‘ | `' |
dom | dom |
ran | ran |
βΎ | |` |
β | " |
β | o. |
Rel | Rel |
β© | iota |
: | : |
Fun | Fun |
Fn | Fn |
βΆ | --> |
β1-1β | -1-1-> |
βontoβ | -onto-> |
β1-1-ontoβ | -1-1-onto-> |
β | ` |
Isom | Isom |
β© | iota_ |
βπ | oF |
βπ | oR |
1st | 1st |
2nd | 2nd |
tpos | tpos |
Smo | Smo |
recs | recs |
rec | rec |
frec | frec |
1o | 1o |
2o | 2o |
3o | 3o |
4o | 4o |
+o | +o |
Β·o | .o |
βo | ^oi |
Er | Er |
/ | /. |
βπ | ^m |
βpm | ^pm |
X | X_ |
β | ~~ |
βΌ | ~<_ |
Fin | Fin |
fi | fi |
sup | sup |
inf | inf |
β | |_| |
inl | inl |
inr | inr |
case | case |
βd | |_|d |
ββ | NN+oo |
Omni | Omni |
Markov | Markov |
WOmni | WOmni |
card | card |
CHOICE | CHOICE |
Ap | Ap |
TAp | TAp |
CCHOICE | CCHOICE |
N | N. |
+N | +N |
Β·N | .N |
<N | <N |
+pQ | +pQ |
Β·pQ | .pQ |
<pQ | <pQ |
~Q | ~Q |
Q | Q. |
1Q | 1Q |
+Q | +Q |
Β·Q | .Q |
*Q | *Q |
<Q | <Q |
~Q0 | ~Q0 |
Q0 | Q0. |
0Q0 | 0Q0 |
+Q0 | +Q0 |
Β·Q0 | .Q0 |
P | P. |
1P | 1P |
+P | +P. |
Β·P | .P. |
<P | <P |
~R | ~R |
R | R. |
0R | 0R |
1R | 1R |
-1R | -1R |
+R | +R |
Β·R | .R |
<R | <R |
<β | <RR |
β | CC |
β | RR |
0 | 0 |
1 | 1 |
i | _i |
+ | + |
Β· | x. |
β€ | <_ |
+β | +oo |
-β | -oo |
β* | RR* |
< | < |
β | - |
- | -u |
#β | #RR |
# | =//= |
β | NN |
2 | 2 |
3 | 3 |
4 | 4 |
5 | 5 |
6 | 6 |
7 | 7 |
8 | 8 |
9 | 9 |
β0 | NN0 |
β0* | NN0* |
β€ | ZZ |
; | ; |
β€β₯ | ZZ>= |
β | |
β+ | RR+ |
-π | -e |
+π | +e |
Β·e | *e |
(,) | (,) |
(,] | (,] |
[,) | [,) |
[,] | [,] |
... | ... |
..^ | ..^ |
β | |_ |
β | |^ |
mod | mod |
β‘ | == |
seq | seq |
β | ^ |
! | ! |
C | _C |
β― | # |
shift | shift |
β | Re |
β | Im |
β | * |
β | sqrt |
abs | abs |
Β± | +- |
β | ~~> |
Ξ£ | sum_ |
β | prod_ |
exp | exp |
e | _e |
sin | sin |
cos | cos |
tan | tan |
Ο | _pi |
Ο | _tau |
β₯ | || |
gcd | gcd |
lcm | lcm |
β | Prime |
numer | numer |
denom | denom |
odβ€ | odZ |
Ο | phi |
pCnt | pCnt |
β€[i] | Z[i] |
Struct | Struct |
ndx | ndx |
sSet | sSet |
Slot | Slot |
Base | Base |
βΎs | |`s |
+g | +g |
.r | .r |
*π | *r |
Scalar | Scalar |
Β·π | .s |
Β·π | .i |
TopSet | TopSet |
le | le |
oc | oc |
dist | dist |
UnifSet | UnifSet |
Hom | Hom |
comp | comp |
βΎt | |`t |
TopOpen | TopOpen |
topGen | topGen |
βt | Xt_ |
0g | 0g |
Ξ£g | gsum |
Xs | Xs_ |
βs | ^s |
βs | "s |
/s | /s |
Γs | Xs. |
+π | +f |
Mgm | Mgm |
Smgrp | Smgrp |
Mnd | Mnd |
MndHom | MndHom |
SubMnd | SubMnd |
Grp | Grp |
invg | invg |
-g | -g |
.g | .g |
~QG | ~QG |
SubGrp | SubGrp |
NrmSGrp | NrmSGrp |
CMnd | CMnd |
Abel | Abel |
mulGrp | mulGrp |
1r | 1r |
SRing | SRing |
Ring | Ring |
CRing | CRing |
oppr | oppR |
β₯r | ||r |
Unit | Unit |
Irred | Irred |
invr | invr |
/r | /r |
RingHom | RingHom |
RingIso | RingIso |
NzRing | NzRing |
LRing | LRing |
SubRing | SubRing |
RingSpan | RingSpan |
#r | #r |
PsMet | PsMet |
βMet | *Met |
Met | Met |
ball | ball |
fBas | fBas |
filGen | filGen |
MetOpen | MetOpen |
metUnif | metUnif |
βfld | CCfld |
β€ring | ZZring |
Top | Top |
TopOn | TopOn |
TopSp | TopSp |
TopBases | TopBases |
int | int |
cls | cls |
Clsd | Clsd |
nei | nei |
Cn | Cn |
CnP | CnP |
βπ‘ | ~~>t |
Γt | tX |
Homeo | Homeo |
βMetSp | *MetSp |
MetSp | MetSp |
toMetSp | toMetSp |
βcnβ | -cn-> |
limβ | limCC |
D | _D |
log | log |
βπ | ^c |
logb | logb |
/L | /L |
DECIDin | DECID_in |
Ξ0 | Delta0 |
BOUNDED | Bdd |
BOUNDED | Bdd_ |
Ind | Ind |
β! | A! |
Copyright terms: Public domain | W3C validator |