ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpt2exxg GIF version

Theorem mpt2exxg 5959
Description: Existence of an operation class abstraction (version for dependent domains). (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypothesis
Ref Expression
mpt2exg.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
mpt2exxg ((𝐴𝑅 ∧ ∀𝑥𝐴 𝐵𝑆) → 𝐹 ∈ V)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem mpt2exxg
StepHypRef Expression
1 mpt2exg.1 . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
21mpt2fun 5729 . 2 Fun 𝐹
31dmmpt2ssx 5951 . . 3 dom 𝐹 𝑥𝐴 ({𝑥} × 𝐵)
4 vex 2622 . . . . . . 7 𝑥 ∈ V
5 snexg 4010 . . . . . . 7 (𝑥 ∈ V → {𝑥} ∈ V)
64, 5ax-mp 7 . . . . . 6 {𝑥} ∈ V
7 xpexg 4540 . . . . . 6 (({𝑥} ∈ V ∧ 𝐵𝑆) → ({𝑥} × 𝐵) ∈ V)
86, 7mpan 415 . . . . 5 (𝐵𝑆 → ({𝑥} × 𝐵) ∈ V)
98ralimi 2438 . . . 4 (∀𝑥𝐴 𝐵𝑆 → ∀𝑥𝐴 ({𝑥} × 𝐵) ∈ V)
10 iunexg 5872 . . . 4 ((𝐴𝑅 ∧ ∀𝑥𝐴 ({𝑥} × 𝐵) ∈ V) → 𝑥𝐴 ({𝑥} × 𝐵) ∈ V)
119, 10sylan2 280 . . 3 ((𝐴𝑅 ∧ ∀𝑥𝐴 𝐵𝑆) → 𝑥𝐴 ({𝑥} × 𝐵) ∈ V)
12 ssexg 3970 . . 3 ((dom 𝐹 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝑥𝐴 ({𝑥} × 𝐵) ∈ V) → dom 𝐹 ∈ V)
133, 11, 12sylancr 405 . 2 ((𝐴𝑅 ∧ ∀𝑥𝐴 𝐵𝑆) → dom 𝐹 ∈ V)
14 funex 5502 . 2 ((Fun 𝐹 ∧ dom 𝐹 ∈ V) → 𝐹 ∈ V)
152, 13, 14sylancr 405 1 ((𝐴𝑅 ∧ ∀𝑥𝐴 𝐵𝑆) → 𝐹 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1289  wcel 1438  wral 2359  Vcvv 2619  wss 2997  {csn 3441   ciun 3725   × cxp 4426  dom cdm 4428  Fun wfun 4996  cmpt2 5636
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894
This theorem is referenced by:  mpt2exg  5960  mpt2ex  5962
  Copyright terms: Public domain W3C validator